版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年遼寧省遼陽(yáng)市成考專(zhuān)升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.曲線(xiàn)y=1nx在點(diǎn)(e,1)處切線(xiàn)的斜率為().A.A.e2
B.eC.1D.1/e
2.
3.設(shè)等于()A.A.-1B.1C.-cos1D.1-cos1
4.設(shè)z=x3-3x-y,則它在點(diǎn)(1,0)處
A.取得極大值B.取得極小值C.無(wú)極值D.無(wú)法判定
5.設(shè)y=f(x)在(a,b)內(nèi)有二階導(dǎo)數(shù),且f"<0,則曲線(xiàn)y=f(x)在(a,b)內(nèi)().A.A.凹B.凸C.凹凸性不可確定D.單調(diào)減少
6.
7.設(shè)z=tan(xy),則等于()A.A.
B.
C.
D.
8.下列等式成立的是()。
A.
B.
C.
D.
9.
10.
11.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)
B.xy2cos(xy2)
C.2xyeos(xy2)
D.y2cos(xy2)
12.A.0B.1C.∞D(zhuǎn).不存在但不是∞
13.
14.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx
15.已知作用在簡(jiǎn)支梁上的力F與力偶矩M=Fl,不計(jì)桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。
A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同
16.微分方程(y)2+(y)3+sinx=0的階數(shù)為
A.1B.2C.3D.4
17.A.x2+C
B.x2-x+C
C.2x2+x+C
D.2x2+C
18.
19.等于().A.A.2B.1C.1/2D.0
20.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。
A.vC=2uB
B.uC=θBα
C.vC=uB+θBα
D.vC=vB
21.若y1·y2為二階線(xiàn)性常系數(shù)微分方程y〞+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.為所給方程的解,但不是通解
B.為所給方程的解,但不一定是通解
C.為所給方程的通解
D.不為所給方程的解
22.
23.設(shè)f(x)為連續(xù)函數(shù),則()'等于().A.A.f(t)B.f(t)-f(a)C.f(x)D.f(x)-f(a)
24.
25.f(x)在x=0的某鄰域內(nèi)一階導(dǎo)數(shù)連續(xù)且則()。A.x=0不是f(x)的極值點(diǎn)B.x=0是f(x)的極大值點(diǎn)C.x=0是f(x)的極小值點(diǎn)D.x=0是f(x)的拐點(diǎn)
26.
27.
28.設(shè)函數(shù)y=2x+sinx,則y'=
A.1+cosxB.1-cosxC.2+cosxD.2-cosx29.
30.
31.
32.
33.設(shè),則函數(shù)f(x)在x=a處().A.A.導(dǎo)數(shù)存在,且有f'(a)=-1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值
34.設(shè)y=2x3,則dy=().
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
35.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)
36.
37.在空間中,方程y=x2表示()A.xOy平面的曲線(xiàn)B.母線(xiàn)平行于Oy軸的拋物柱面C.母線(xiàn)平行于Oz軸的拋物柱面D.拋物面
38.A.-3-xln3
B.-3-x/ln3
C.3-x/ln3
D.3-xln3
39.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
40.()。A.收斂且和為0
B.收斂且和為α
C.收斂且和為α-α1
D.發(fā)散
41.
42.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C43.A.-e2x-y
B.e2x-y
C.-2e2x-y
D.2e2x-y
44.下列命題正確的是()A.A.
B.
C.
D.
45.設(shè)y=f(x)為可導(dǎo)函數(shù),則當(dāng)△x→0時(shí),△y-dy為△x的A.A.高階無(wú)窮小B.等價(jià)無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.低階無(wú)窮小46.一端固定,一端為彈性支撐的壓桿,如圖所示,其長(zhǎng)度系數(shù)的范圍為()。
A.μ<0.7B.μ>2C.0.7<μ<2D.不能確定47.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線(xiàn)y=f(x)與直線(xiàn)x=a,x=b,y=0所圍成的封閉圖形的面積為().A.A.
B.
C.
D.不能確定
48.
49.
50.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
二、填空題(20題)51.
52.53.54.設(shè)y=1nx,則y'=__________.
55.
56.若∫x0f(t)dt=2e3x-2,則f(x)=________。
57.
58.設(shè)f(x)在x=1處連續(xù),=2,則=________。59.微分方程y"+y=0的通解為_(kāi)_____.
60.
61.設(shè),則y'=______。62.
63.
64.
65.
66.
67.68.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則
69.
70.已知∫01f(x)dx=π,則∫01dx∫01f(x)f(y)dy=________。
三、計(jì)算題(20題)71.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.72.求曲線(xiàn)在點(diǎn)(1,3)處的切線(xiàn)方程.73.
74.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)l的方程.75.設(shè)拋物線(xiàn)Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線(xiàn)與x軸所圍成的平面區(qū)域內(nèi),以線(xiàn)段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
76.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.77.證明:
78.求微分方程y"-4y'+4y=e-2x的通解.
79.求微分方程的通解.80.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
81.
82.
83.
84.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
85.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
86.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線(xiàn)的凹凸區(qū)間和拐點(diǎn).87.88.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則89.90.四、解答題(10題)91.求微分方程y"-3y'+2y=0的通解。
92.計(jì)算二重積分
,其中D是由直線(xiàn)
及y=1圍
成的平面區(qū)域.
93.
94.用鐵皮做一個(gè)容積為V的圓柱形有蓋桶,證明當(dāng)圓柱的高等于底面直徑時(shí),所使用的鐵皮面積最小。95.將f(x)=1/3-x展開(kāi)為(x+2)的冪級(jí)數(shù),并指出其收斂區(qū)間。
96.求曲線(xiàn)y=e-x、x=1,y軸與x軸所圍成圖形的面積A及該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vx。
97.求,其中D為y=x-4,y2=2x所圍成的區(qū)域。98.99.
100.
五、高等數(shù)學(xué)(0題)101.求極限
六、解答題(0題)102.
參考答案
1.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.
由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點(diǎn)x0處可導(dǎo),則曲線(xiàn)),y=f(x)在點(diǎn)(x0,f(x0))處必定存在切線(xiàn),且切線(xiàn)的斜率為f(x0).
由于y=lnx,可知可知應(yīng)選D.
2.A解析:
3.B本題考查的知識(shí)點(diǎn)為可變上限的積分.
由于,從而知
可知應(yīng)選B.
4.C
5.A本題考查的知識(shí)點(diǎn)為利用二階導(dǎo)數(shù)符號(hào)判定曲線(xiàn)的凹凸性.
由于在(a,b)區(qū)間內(nèi)f"(x)<0,可知曲線(xiàn)y=f(x)在(a,b)內(nèi)為凹的,因此選A.
6.D
7.B本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)運(yùn)算.
由于z=tan(xy),因此
可知應(yīng)選A.
8.C
9.C
10.D解析:
11.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。
12.D本題考查了函數(shù)的極限的知識(shí)點(diǎn)。
13.D
14.B
15.D
16.B
17.B本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.
因此選B.
18.C
19.D本題考查的知識(shí)點(diǎn)為重要極限公式與無(wú)窮小性質(zhì).
注意:極限過(guò)程為x→∞,因此
不是重要極限形式!由于x→∞時(shí),1/x為無(wú)窮小,而sin2x為有界變量.由無(wú)窮小與有界變量之積仍為無(wú)窮小的性質(zhì)可知
20.C
21.B
22.C
23.C本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo)性質(zhì).
這是一個(gè)基本性質(zhì):若f(x)為連續(xù)函數(shù),則必定可導(dǎo),且
本題常見(jiàn)的錯(cuò)誤是選D,這是由于考生將積分的性質(zhì)與牛頓-萊布尼茨公式混在了一起而引起的錯(cuò)誤.
24.C解析:
25.A∵分母極限為0,分子極限也為0;(否則極限不存在)用羅必達(dá)法則同理即f"(0)一1≠0;x=0不是駐點(diǎn)∵可導(dǎo)函數(shù)的極值點(diǎn)必是駐點(diǎn)∴選A。
26.D
27.C
28.D本題考查了一階導(dǎo)數(shù)的知識(shí)點(diǎn)。因?yàn)閥=2x+sinx,則y'=2+cosx.
29.D
30.B
31.C解析:
32.C解析:
33.A本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
由于,可知f'(a)=-1,因此選A.
由于f'(a)=-1≠0,因此f(a)不可能是f(x)的極值,可知C,D都不正確.
34.B由微分基本公式及四則運(yùn)算法則可求得.也可以利用dy=y′dx求得故選B.
35.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來(lái)判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。
36.D解析:
37.C方程F(x,y)=0表示母線(xiàn)平行于Oz軸的柱面,稱(chēng)之為柱面方程,故選C。
38.A由復(fù)合函數(shù)鏈?zhǔn)椒▌t可知,因此選A.
39.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線(xiàn)性微分方程;還可以仿二階線(xiàn)性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線(xiàn)性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線(xiàn)性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
40.C
41.A解析:
42.C
43.C本題考查了二元函數(shù)的高階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。
44.D
45.A由微分的定義可知△y=dy+o(△x),因此當(dāng)△x→0時(shí)△y-dy=o(△x)為△x的高階無(wú)窮小,因此選A。
46.D
47.B本題考查的知識(shí)點(diǎn)為定積分的幾何意義.
由定積分的幾何意義可知應(yīng)選B.
常見(jiàn)的錯(cuò)誤是選C.如果畫(huà)個(gè)草圖,則可以避免這類(lèi)錯(cuò)誤.
48.C解析:
49.A解析:
50.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
51.
52.本題考查的知識(shí)點(diǎn)為兩個(gè):參數(shù)方程形式的函數(shù)求導(dǎo)和可變上限積分求導(dǎo).
53.
54.
55.(1+x)ex(1+x)ex
解析:
56.6e3x
57.1/258.由連續(xù)函數(shù)的充要條件知f(x)在x0處連續(xù),則。59.y=C1cosx+C2sinx本題考查的知識(shí)點(diǎn)為二階線(xiàn)性常系數(shù)齊次微分方程的求解.
特征方程為r2+1=0,特征根為r=±i,因此所給微分方程的通解為y=C1cosx+C2sinx.
60.61.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算。
62.解析:
63.1/200
64.1/61/6解析:
65.
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.
66.
67.x-arctanx+C68.本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算。
如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長(zhǎng)、寬都為1的正形,可知其面積為1。因此
69.
70.π2因?yàn)椤?1f(x)dx=π,所以∫01dx∫01(x)f(y)dy=∫01f(x)dx∫01f(y)dy=(∫01f(x)dx)2=π2。
71.
72.曲線(xiàn)方程為,點(diǎn)(1,3)在曲線(xiàn)上.
因此所求曲線(xiàn)方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線(xiàn)y=f(x)在點(diǎn)
(x0,fx0))處存在切線(xiàn),且切線(xiàn)的斜率為f′(x0).切線(xiàn)方程為
73.
則
74.
75.
76.由二重積分物理意義知
77.
78.解:原方程對(duì)應(yīng)的齊次方程為y"-4
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 贛州職業(yè)技術(shù)學(xué)院《海洋生態(tài)與海洋生物的保護(hù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 消毒滅菌培訓(xùn)課件
- 《心肺復(fù)蘇術(shù)操作》課件
- 贛南師范大學(xué)《食品腐敗的抗?fàn)幹贰?023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)生微班會(huì)課件
- 小學(xué)生知禮儀課件
- 三年級(jí)數(shù)學(xué)上冊(cè)8探索樂(lè)園用有余數(shù)的除法解決規(guī)律問(wèn)題學(xué)案冀教版
- 三年級(jí)數(shù)學(xué)上冊(cè)五四則混合運(yùn)算說(shuō)課稿西師大版
- 三年級(jí)數(shù)學(xué)上冊(cè)第九單元數(shù)學(xué)廣角第1課時(shí)集合教案新人教版
- 2025年7月日歷表(含農(nóng)歷-周數(shù)-方便記事備忘)
- 病例討論麻醉科PPT課件
- EBZ220A掘進(jìn)機(jī)幻燈片
- 物資采購(gòu)管理流程圖
- 集體跳繩賽規(guī)則
- 煤礦調(diào)度工作培訓(xùn)內(nèi)容
- 機(jī)械原理課程設(shè)計(jì)-旋轉(zhuǎn)型灌裝機(jī)運(yùn)動(dòng)方案設(shè)計(jì)
- 標(biāo)準(zhǔn)《大跨徑混凝土橋梁的試驗(yàn)方法》
- 1、食品安全與營(yíng)養(yǎng)健康自查制度(學(xué)校食堂)
- 四氯化硅的提純
- 完整版高支模監(jiān)理實(shí)施細(xì)則
- DLT666-2012風(fēng)電場(chǎng)運(yùn)行規(guī)程
評(píng)論
0/150
提交評(píng)論