版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年湖南省張家界市成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.
2.二元函數(shù)z=x3-y3+3x2+3y2-9x的極小值點為()
A.(1,0)B.(1,2)C.(-3,0)D.(-3,2)
3.A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)
4.A.A.3B.1C.1/3D.0
5.點M(4,-3,5)到Ox軸的距離d=()A.A.
B.
C.
D.
6.設(shè)y=sin2x,則y'=A.A.2cosxB.cos2xC.2cos2xD.cosx
7.
8.圖示結(jié)構(gòu)中,F(xiàn)=10N,I為圓桿,直徑d=15mm,2為正方形截面桿,邊長為a=20mm,α=30。,則各桿強度計算有誤的一項為()。
A.1桿受拉20kNB.2桿受壓17.3kNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa
9.設(shè)函數(shù)f(x)在[0,b]連續(xù),在(a,b)可導(dǎo),f′(x)>0.若f(a)·f(b)<0,則y=f(x)在(a,b)().
A.不存在零點
B.存在唯一零點
C.存在極大值點
D.存在極小值點
10.
11.設(shè)f(x)=x3+x,則等于()。A.0
B.8
C.
D.
12.當(dāng)x→0時,與x等價的無窮小量是()
A.
B.ln(1+x)
C.
D.x2(x+1)
13.在空間中,方程y=x2表示()A.xOy平面的曲線B.母線平行于Oy軸的拋物柱面C.母線平行于Oz軸的拋物柱面D.拋物面
14.A.0B.1C.∞D(zhuǎn).不存在但不是∞
15.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,4
16.
17.
A.sinx+C
B.cosx+C
C.-sinx+C
D.-COSx+C
18.
19.平面的位置關(guān)系為()。A.垂直B.斜交C.平行D.重合20.設(shè)().A.A.必定收斂B.必定發(fā)散C.收斂性與a有關(guān)D.上述三個結(jié)論都不正確
21.
22.
23.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無關(guān)條件24.設(shè)函數(shù)f(x)在點x0。處連續(xù),則下列結(jié)論正確的是().A.A.
B.
C.
D.
25.
26.A.2B.1C.1/2D.-1
27.以下結(jié)論正確的是().
A.
B.
C.
D.
28.若∫f(x)dx=F(x)+C,則∫f(2x)dx等于().A.A.2F(2x)+CB.F(2x)+CC.F(x)+CD.F(2x)/2+C29.A.A.
B.
C.
D.
30.曲線y=lnx-2在點(e,-1)的切線方程為()A.A.
B.
C.
D.
31.
32.
33.∫sin5xdx等于().
A.A.
B.
C.
D.
34.
35.則f(x)間斷點是x=()。A.2B.1C.0D.-136.設(shè)f(x)在點x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.137.微分方程y"-4y=0的特征根為A.A.0,4B.-2,2C.-2,4D.2,4
38.搖篩機如圖所示,已知O1B=O2B=0.4m,O1O2=AB,桿O1A按
規(guī)律擺動,(式中∮以rad計,t以s計)。則當(dāng)t=0和t=2s時,關(guān)于篩面中點M的速度和加速度就散不正確的一項為()。
A.當(dāng)t=0時,篩面中點M的速度大小為15.7cm/s
B.當(dāng)t=0時,篩面中點M的法向加速度大小為6.17cm/s2
C.當(dāng)t=2s時,篩面中點M的速度大小為0
D.當(dāng)t=2s時,篩面中點M的切向加速度大小為12.3cm/s2
39.
40.設(shè)有直線當(dāng)直線l1與l2平行時,λ等于().
A.1B.0C.-1/2D.-1
41.
42.
設(shè)f(x)=1+x,則f(x)等于()。A.1
B.
C.
D.
43.A.
B.0
C.
D.
44.等于().A.A.2B.1C.1/2D.0
45.
46.
47.
48.
49.
50.
二、填空題(20題)51.
52.
53.
54.
55.
56.
57.
58.59.設(shè)區(qū)域D為y=x2,x=y2圍成的在第一象限內(nèi)的區(qū)域,則=______.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.設(shè)f(x)=ax3-6ax2+b在區(qū)間[-1,2]的最大值為2,最小值為-29,又知a>0,則a,b的取值為______.
70.三、計算題(20題)71.將f(x)=e-2X展開為x的冪級數(shù).72.73.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
74.
75.76.
77.
78.求微分方程y"-4y'+4y=e-2x的通解.
79.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
80.求微分方程的通解.81.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.82.證明:83.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.84.求曲線在點(1,3)處的切線方程.85.
86.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
87.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.88.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
89.
90.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則四、解答題(10題)91.求由曲線y=x2(x≥0),直線y=1及Y軸圍成的平面圖形的面積·
92.
93.求由曲線y2=(x-1)3和直線x=2所圍成的圖形繞x軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體的體積.
94.
95.
96.
97.設(shè)y=x2+2x,求y'。
98.
99.100.五、高等數(shù)學(xué)(0題)101.判定
的斂散性。
六、解答題(0題)102.
參考答案
1.B
2.A對于點(-3,0),A=-18+6=-12,B=0,C=6,B2-AC=72>0,故此點為非極值點.對于點(-3,2),A=-12,B=0,C=-12+6=-6,B2-AC=-72<0,故此點為極大值點.對于點(1,0),A=12,B=0,C=6,B2-AC=-72<0,故此點為極小值點.對于點(1,2),A=12=0,C=-6,B2-AC=72>0,故此點為非極值點.
3.C本題考查的知識點為判定函數(shù)的單調(diào)性。
4.A
5.B
6.C由鏈式法則可得(sin2x)'=cos2x*(2x)'=2cos2x,故選C。
7.C
8.C
9.B由于f(x)在[a,b]上連續(xù)f(z)·fb)<0,由閉區(qū)間上連續(xù)函數(shù)的零點定理可知,y=f(x)在(a,b)內(nèi)至少存在一個零點.又由于f(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,因此f(x)在(a,b)內(nèi)如果有零點,則至多存在一個.
綜合上述f(x)在(a,b)內(nèi)存在唯一零點,故選B.
10.C
11.A本題考查的知識點為定積分的對稱性質(zhì)。由于所給定積分的積分區(qū)間為對稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對稱性質(zhì)可知
可知應(yīng)選A。
12.B?
13.C方程F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,故選C。
14.D
15.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.
16.A解析:
17.A
18.B
19.A本題考查的知識點為兩平面的關(guān)系。兩平面的關(guān)系可由兩平面的法向量,n1,n2間的關(guān)系確定。若n1⊥n2,則兩平面必定垂直.若時,兩平面平行;
當(dāng)時,兩平面重合。若n1與n2既不垂直,也不平行,則兩平面斜交。由于n1=(1,-2,3),n2=(2,1,0),n1·n2=0,可知n1⊥n2,因此π1⊥π2,應(yīng)選A。
20.D
21.A解析:
22.D
23.D
24.D本題考查的知識點為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系.由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項D正確,C不正確.由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確.
25.C解析:
26.A本題考查了函數(shù)的導(dǎo)數(shù)的知識點。
27.C
28.D本題考查的知識點為不定積分的第一換元積分法(湊微分法).
由題設(shè)知∫f(x)dx=F(x)+C,因此
可知應(yīng)選D.
29.B本題考查的知識點為偏導(dǎo)數(shù)運算.
由于z=tan(xy),因此
可知應(yīng)選B.
30.D
31.C
32.A
33.A本題考查的知識點為不定積分的換元積分法.
,可知應(yīng)選D.
34.C
35.Df(x)為分式,當(dāng)X=-l時,分母x+1=0,分式?jīng)]有意義,因此點x=-1為f(x)的間斷點,故選D。
36.B由導(dǎo)數(shù)的定義可知
可知,故應(yīng)選B。
37.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B。
38.D
39.A
40.C解析:
41.B
42.C本題考查的知識點為不定積分的性質(zhì)。可知應(yīng)選C。
43.A
44.D本題考查的知識點為重要極限公式與無窮小性質(zhì).
注意:極限過程為x→∞,因此
不是重要極限形式!由于x→∞時,1/x為無窮小,而sin2x為有界變量.由無窮小與有界變量之積仍為無窮小的性質(zhì)可知
45.A
46.B
47.C解析:
48.B
49.C解析:
50.B
51.
52.
解析:
53.
本題考查的知識點為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
54.1/3
55.
56.0<k≤1
57.-2y58.1/659.1/3;本題考查的知識點為二重積分的計算.
60.
61.x=2x=2解析:
62.0
63.(1+x)2
64.(e-1)2
65.
66.1
67.
68.
69.
f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因為a>0,所以,f''(0)<0,所以x=0是極值點.又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因為a>0,故當(dāng)x=0時,f(x)最大,即b=2;當(dāng)x=2時,f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=.
70.本題考查的知識點為兩個:參數(shù)方程形式的函數(shù)求導(dǎo)和可變上限積分求導(dǎo).
71.
72.
73.
74.
75.
76.由一階線性微分方程通解公式有
77.
78.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
79.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
80.
81.
列表:
說明
82.
83.
84.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
85.
則
86.
87.由二重積分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024門面施工現(xiàn)場管理及應(yīng)急預(yù)案合同3篇
- 2024年貨物出口合同標(biāo)的及出口規(guī)格
- 2024年社區(qū)羽毛球館租賃協(xié)議3篇
- 2024汽車租賃公司新能源車輛推廣合同
- 2024年限定版房產(chǎn)市場調(diào)研與營銷策劃服務(wù)協(xié)議版B版
- 2024年跨界合作居間協(xié)議書
- 2024年鐵路軌道焊接分包商協(xié)議
- 2025年度餐廳與旅行社聯(lián)合運營美食旅游項目合同3篇
- 2024版鐵路安全協(xié)議書
- 職業(yè)學(xué)院工會評優(yōu)評先實施辦法
- 新能源發(fā)電技術(shù) 課件 第6章 地?zé)岚l(fā)電
- 期末測試卷(試題)-2024-2025學(xué)年人教PEP版(2024)英語三年級上冊
- 2024至2030年中國購物商場行業(yè)市場深度調(diào)查與投資發(fā)展研究報告
- 期末測試(試題)2023-2024學(xué)年五年級上冊數(shù)學(xué)人教版
- 二年級上冊數(shù)學(xué)兩位數(shù)加減豎式計算題100道及答案
- 《天然藥物學(xué)基礎(chǔ)》復(fù)習(xí)考試題庫(帶答案)
- 湖北省2024年中考數(shù)學(xué)試卷【附真題答案】
- 德國高等工程教育認證制度研究
- 2024年四川省成都市中考數(shù)學(xué)試卷(含解析)
- 【人民日報】72則金句期末評語模板-每頁4張
- 零缺陷質(zhì)量意識
評論
0/150
提交評論