2022-2023學(xué)年廣東省潮州市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第1頁(yè)
2022-2023學(xué)年廣東省潮州市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第2頁(yè)
2022-2023學(xué)年廣東省潮州市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第3頁(yè)
2022-2023學(xué)年廣東省潮州市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第4頁(yè)
2022-2023學(xué)年廣東省潮州市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩30頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年廣東省潮州市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.

2.A.2xy+3+2yB.xy+3+2yC.2xy+3D.xy+33.A.A.Ax

B.

C.

D.

4.A.A.-(1/2)B.1/2C.-1D.25.A.A.條件收斂B.絕對(duì)收斂C.收斂性與k有關(guān)D.發(fā)散6.

在x=0處()。A.間斷B.可導(dǎo)C.可微D.連續(xù)但不可導(dǎo)

7.下列關(guān)于動(dòng)載荷的敘述不正確的一項(xiàng)是()。

A.動(dòng)載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點(diǎn)的加速度必須考慮,而后者可忽略不計(jì)

B.勻速直線運(yùn)動(dòng)時(shí)的動(dòng)荷因數(shù)為

C.自由落體沖擊時(shí)的動(dòng)荷因數(shù)為

D.增大靜變形是減小沖擊載荷的主要途徑

8.下面哪個(gè)理論關(guān)注下屬的成熟度()

A.管理方格B.路徑—目標(biāo)理論C.領(lǐng)導(dǎo)生命周期理論D.菲德勒權(quán)變理論

9.

10.A.3B.2C.1D.1/211.下列命題中正確的有().A.A.

B.

C.

D.

12.設(shè)函數(shù)f(x)在點(diǎn)x0處連續(xù),則下列結(jié)論肯定正確的是()。A.

B.

C.

D.

13.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過(guò)小環(huán)M并勻速繞A點(diǎn)轉(zhuǎn)動(dòng),已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開(kāi)始時(shí)AB桿處于水平位置,則當(dāng)小環(huán)M運(yùn)動(dòng)到圖示位置時(shí)(以MO為坐標(biāo)原點(diǎn),小環(huán)Md運(yùn)動(dòng)方程為正方向建立自然坐標(biāo)軸),下面說(shuō)法不正確的一項(xiàng)是()。

A.小環(huán)M的運(yùn)動(dòng)方程為s=2Rωt

B.小環(huán)M的速度為

C.小環(huán)M的切向加速度為0

D.小環(huán)M的法向加速度為2Rω2

14.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx

15.

16.曲線y=x-ex在點(diǎn)(0,-1)處切線的斜率k=A.A.2B.1C.0D.-1

17.曲線Y=x-3在點(diǎn)(1,1)處的切線的斜率為().

A.-1

B.-2

C.-3

D.-4

18.

19.已知作用在簡(jiǎn)支梁上的力F與力偶矩M=Fl,不計(jì)桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。

A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同20.A.A.sin(x-1)+C

B.-sin(x-1)+C

C.sinx+C&nbsbr;

D.-sinx+C

21.

22.A.-cosxB.-ycosxC.cosxD.ycosx23.設(shè)二元函數(shù)z=xy,則點(diǎn)P0(0,0)A.為z的駐點(diǎn),但不為極值點(diǎn)B.為z的駐點(diǎn),且為極大值點(diǎn)C.為z的駐點(diǎn),且為極小值點(diǎn)D.不為z的駐點(diǎn),也不為極值點(diǎn)

24.方程x2+y2-2z=0表示的二次曲面是.

A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面

25.

26.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx

27.下列等式成立的是()。

A.

B.

C.

D.

28.

29.設(shè)f(x)=e-2x,則f'(x)=()。A.-e-2x

B.e-2x

C.-(1/2)e-2x

D.-2e-2x

30.過(guò)點(diǎn)(0,2,4)且平行于平面x+2z=1,y-3z=2的直線方程為

A.

B.

C.

D.-2x+3(y-2)+z-4=0

31.

32.

33.

34.

35.

36.剛體上A、B、C、D四點(diǎn)組成一個(gè)平行四邊形,如在其四個(gè)頂點(diǎn)作用四個(gè)力,此四個(gè)邊恰好組成封閉的力多邊形。則()

A.力系平衡

B.力系有合力

C.力系的合力偶矩等于平行四邊形ABCD的面積

D.力系的合力偶矩等于負(fù)的平行四邊形ABCD的面積的2倍

37.A.沒(méi)有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線38.f(x)是可積的偶函數(shù),則是()。A.偶函數(shù)B.奇函數(shù)C.非奇非偶D.可奇可偶

39.

40.A.A.1

B.

C.m

D.m2

41.函數(shù)z=x2-xy+y2+9x-6y+20有()

A.極大值f(4,1)=63B.極大值f(0,0)=20C.極大值f(-4,1)=-1D.極小值f(-4,1)=-142.平面π1:x-2y+3z+1=0,π2:2x+y+2=0的位置關(guān)系為().A.A.垂直B.斜交C.平行D.重合43.若x0為f(x)的極值點(diǎn),則().A.A.f(x0)必定存在,且f(x0)=0

B.f(x0)必定存在,但f(x0)不-定等于零

C.f(x0)不存在或f(x0)=0

D.f(x0)必定不存在

44.微分方程(y)2+(y)3+sinx=0的階數(shù)為

A.1B.2C.3D.4

45.設(shè)f(x)在x=0處有二階連續(xù)導(dǎo)數(shù)

則x=0是f(x)的()。

A.間斷點(diǎn)B.極大值點(diǎn)C.極小值點(diǎn)D.拐點(diǎn)46.A.A.3yx3y-1

B.yx3y-1

C.x3ylnx

D.3x3ylnx

47.

48.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,4

49.

50.設(shè)在點(diǎn)x=1處連續(xù),則a等于()。A.-1B.0C.1D.2二、填空題(20題)51.52.53.

54.

55.

56.

57.微分方程y+y=sinx的一個(gè)特解具有形式為

58.

59.空間直角坐標(biāo)系中方程x2+y2=9表示的曲線是________。

60.

61.

62.

63.

64.65.設(shè)z=ln(x2+y),則全微分dz=__________。66.交換二重積分次序=______.67.

68.

69.冪級(jí)數(shù)的收斂半徑為_(kāi)_____.70.

三、計(jì)算題(20題)71.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.72.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.73.證明:74.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

75.76.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.77.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.78.79.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

80.

81.

82.

83.求微分方程y"-4y'+4y=e-2x的通解.

84.求微分方程的通解.

85.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

86.

87.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則88.求曲線在點(diǎn)(1,3)處的切線方程.89.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).90.

四、解答題(10題)91.

92.設(shè)y=xcosx,求y'.

93.求y"+2y'+y=2ex的通解.

94.

95.

96.

97.98.求y"-2y'=2x的通解.99.100.五、高等數(shù)學(xué)(0題)101.級(jí)數(shù)

()。

A.絕對(duì)收斂B.條件收斂C.發(fā)散D.不能確定六、解答題(0題)102.

參考答案

1.A

2.C本題考查了一階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。

3.D

4.A

5.A本題考杏的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂.

6.D①∵f(0)=0,f-(0)=0,f+(0)=0;∴f(x)在x=0處連續(xù);∵f-"(0)≠f"(0)∴f(x)在x=0處不可導(dǎo)。

7.C

8.C解析:領(lǐng)導(dǎo)生命周期理論關(guān)注下屬的成熟度。

9.B

10.B,可知應(yīng)選B。

11.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的性質(zhì).

可知應(yīng)選B.通常可以將其作為判定級(jí)數(shù)發(fā)散的充分條件使用.

12.D本題考查的知識(shí)點(diǎn)為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項(xiàng)D正確,C不正確。由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確。自于連續(xù)必定能保證極限等于f(x0),而f(x0)不一定等于0,B不正確。故知應(yīng)選D。

13.D

14.B

15.C解析:

16.C

17.C點(diǎn)(1,1)在曲線.由導(dǎo)數(shù)的幾何意義可知,所求切線的斜率為-3,因此選C.

18.A

19.D

20.A本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.

可知應(yīng)選A.

21.A

22.C本題考查的知識(shí)點(diǎn)為二階偏導(dǎo)數(shù)。由于z=y(tǒng)sinx,因此可知應(yīng)選C。

23.A

24.C本題考查了二次曲面的知識(shí)點(diǎn)。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。

25.C

26.B

27.C

28.D

29.D

30.C

31.A

32.A

33.C

34.D

35.C

36.D

37.D本題考查了曲線的漸近線的知識(shí)點(diǎn),

38.Bf(x)是可積的偶函數(shù);設(shè)令t=-u,是奇函數(shù)。

39.D

40.D本題考查的知識(shí)點(diǎn)為重要極限公式或等價(jià)無(wú)窮小量代換.

解法1

解法2

41.D

42.A本題考查的知識(shí)點(diǎn)為兩平面的關(guān)系.

兩平面的關(guān)系可由兩平面的法向量n1,n2間的關(guān)系確定.

43.C本題考查的知識(shí)點(diǎn)為函數(shù)極值點(diǎn)的性質(zhì).

若x0為函數(shù)y=f(x)的極值點(diǎn),則可能出現(xiàn)兩種情形:

(1)f(x)在點(diǎn)x0處不可導(dǎo),如y=|x|,在點(diǎn)x0=0處f(x)不可導(dǎo),但是點(diǎn)x0=0為f(x)=|x|的極值點(diǎn).

(2)f(x)在點(diǎn)x0可導(dǎo),則由極值的必要條件可知,必定有f(x0)=0.

從題目的選項(xiàng)可知應(yīng)選C.

本題常見(jiàn)的錯(cuò)誤是選A.其原因是考生將極值的必要條件:“若f(x)在點(diǎn)x0可導(dǎo),且x0為f(x)的極值點(diǎn),則必有f(x0)=0”認(rèn)為是極值的充分必要條件.

44.B

45.C則x=0是f(x)的極小值點(diǎn)。

46.D

47.C

48.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.

49.A

50.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。

由于y為分段函數(shù),x=1為其分段點(diǎn)。在x=1的兩側(cè)f(x)的表達(dá)式不同。因此討論y=f(x)在x=1處的連續(xù)性應(yīng)該利用左連續(xù)與右連續(xù)的概念。由于

當(dāng)x=1為y=f(x)的連續(xù)點(diǎn)時(shí),應(yīng)有存在,從而有,即

a+1=2。

可得:a=1,因此選C。

51.

52.53.ln(1+x)本題考查的知識(shí)點(diǎn)為可變上限積分求導(dǎo).

54.1-m

55.-3sin3x-3sin3x解析:56.1

57.

58.59.以O(shè)z為軸的圓柱面方程。F(x,y)=0表示母線平行于Oz軸的柱面,稱(chēng)之為柱面方程,方程x2+y2=32=0表示母線平行Oz軸的圓柱面方程。

60.90

61.

62.(1/3)ln3x+C

63.

64.

65.

66.本題考查的知識(shí)點(diǎn)為交換二重積分次序.

積分區(qū)域D:0≤x≤1,x2≤y≤x

積分區(qū)域D也可以表示為0≤y≤1,y≤x≤,因此

67.π/4本題考查了定積分的知識(shí)點(diǎn)。

68.7/5

69.

;70.由可變上限積分求導(dǎo)公式可知

71.

72.

73.

74.

75.76.函數(shù)的定義域?yàn)?/p>

注意

77.由二重積分物理意義知

78.

79.

列表:

說(shuō)明

80.

81.

82.

83.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

84.

85.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

86.

87.由等價(jià)無(wú)窮小量的定義可知88.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

89.90.由一階線性微分方程通解公式有

91.92.y=xcosx,則y'=cosx-xsinx.

93.相應(yīng)微分方程的齊次微分方程為y"+2y'+y=0.其特征方程為r2+2r+1=0;特征根為r=-1(二重實(shí)根);齊次方程的通解為Y=(C1+C2x)e-x

相應(yīng)微分方程的齊次微分方程為y"+2y'+y=0.其特征方程為r

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論