華東師版九年級數(shù)學知識點_第1頁
華東師版九年級數(shù)學知識點_第2頁
華東師版九年級數(shù)學知識點_第3頁
華東師版九年級數(shù)學知識點_第4頁
華東師版九年級數(shù)學知識點_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

本文格式為Word版,下載可任意編輯——華東師版九年級數(shù)學知識點學習這件事不在乎有沒有人教你,最重要的是在于你自己有沒有覺悟和恒心。任何科目(學習(方法))其實都是一樣的,不斷的記憶與練習,使學識刻在腦海里。下面是我給大家整理的一些(九年級數(shù)學)的學識點,夢想對大家有所扶助。

九年級下冊數(shù)學學識點歸納

學識點1.概念

把外形一致的圖形叫做好像圖形。(即對應角相等、對應邊的比也相等的圖形)

解讀:(1)兩個圖形好像,其中一個圖形可以看做由另一個圖形放大或縮小得到.

(2)全等形可以看成是一種特殊的好像,即不僅外形一致,大小也一致.

(3)判斷兩個圖形是否好像,就是看這兩個圖形是不是外形一致,與其他因素無關.

學識點2.比例線段

對于四條線段a,b,c,d,假設其中兩條線段的長度的比與另兩條線段的長度的比相等,即(或a:b=c:d)那么這四條線段叫做成比例線段,簡稱比例線段.

學識點3.好像多邊形的性質

好像多邊形的性質:好像多邊形的對應角相等,對應邊的比相等.

解讀:(1)正確理解好像多邊形的定義,明確“對應”關系.

(2)明確好像多邊形的“對應”來自于書寫,且要明確好像比具有依次性.

學識點4.好像三角形的概念

對應角相等,對應邊之比相等的三角形叫做好像三角形.

解讀:(1)好像三角形是好像多邊形中的一種;

(2)應結合好像多邊形的性質來理解好像三角形;

(3)好像三角形應得志外形一樣,但大小可以不同;

(4)好像用“∽”表示,讀作“好像于”;

(5)好像三角形的對應邊之比叫做好像比.

學識點5.好像三角的判定方法

(1)定義:對應角相等,對應邊成比例的兩個三角形好像;

(2)平行于三角形一邊的直線截其他兩邊(或其他兩邊的延長線)所構成的三角形與原三角形好像.

(3)假設一個三角形的兩個角分別與另一個三角形的兩個角對應相等,那么這兩個三角形好像.

(4)假設一個三角的兩條邊與另一個三角形的兩條邊對應成比例,并且夾角相等,那么這兩個三角形好像.

(5)假設一個三角形的三條邊分別與另一個三角形的三條邊對應成比例,那么這兩個三角形好像.

(6)直角三角形被斜邊上的高分成的兩個直角三角形與原三角形都好像.

學識點6.好像三角形的性質

(1)對應角相等,對應邊的比相等;

(2)對應高的比,對應中線的比,對應角平分線的比都等于好像比;

(3)好像三角形周長之比等于好像比;面積之比等于好像比的平方.

(4)射影定理

初三下冊數(shù)學學識點(總結)2021

半徑與弦長計算,弦心距來中間站。圓上若有一切線,切點圓心半徑連。

切線長度的計算,勾股定理最便當。要想證明是切線,半徑垂線留心辨。

是直徑,成半圓,想成直角徑連弦?;∮兄悬c圓心連,垂徑定理要記全。

圓周角邊兩條弦,直徑和弦端點連。弦切角邊切線弦,同弧對角等找完。

要想作個外接圓,各邊作出中垂線。還要作個內接圓,內角平分線夢圓。

假設遇到相交圓,不要忘作公共弦。內外相切的兩圓,經過切點公切線。

若是添上連心線,切點斷定在上面。要作等角添個圓,證明題目少困難。

輔佐線,是虛線,畫圖留神勿變更。假使圖形較分散,對稱旋轉去測驗。

根本作圖很關鍵,平日掌管要純熟。解題還要多心眼,經常總結方法顯。

切勿盲目亂添線,方法生動應多變。分析綜合方法選,困難再多也會減。

虛心勤學加苦練,勞績上升成直線。

初三數(shù)學重要學識點整理

定義:形如函數(shù)y=k/x(k為常數(shù)且k≠0)叫做反比例函數(shù),其中k叫做比例系數(shù),x是自變量,y是自變量x的函數(shù),x的取值范圍是不等于0的一切實數(shù)。

反比例函數(shù)的一般形式

一般地,假設兩個變量x、y之間的關系可以表示成(k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù)。

其中,x是自變量,y是函數(shù)。由于x在分母上,故取x≠0的一切實數(shù),看函數(shù)y的取值范圍,由于k≠0,且x≠0,所以函數(shù)值y也不成能為0。

補充說明:1.反比例函數(shù)的解析式又可以寫成:(k是常數(shù),k≠0).

2.要求出反比例函數(shù)的解析式,利用待定系數(shù)法求出k即可.

反比例函數(shù)解析式的特征

⑴等號左邊是函數(shù),等號右邊是一個分式。分子是不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論