2022年云南省臨滄市名校九年級數(shù)學第一學期期末考試試題含解析_第1頁
2022年云南省臨滄市名校九年級數(shù)學第一學期期末考試試題含解析_第2頁
2022年云南省臨滄市名校九年級數(shù)學第一學期期末考試試題含解析_第3頁
2022年云南省臨滄市名校九年級數(shù)學第一學期期末考試試題含解析_第4頁
2022年云南省臨滄市名校九年級數(shù)學第一學期期末考試試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖示,二次函數(shù)的圖像與軸交于坐標原點和,若關于的方程(為實數(shù))在的范圍內有解,則的取值范圍是()A. B. C. D.2.常勝村2017年的人均收入為12000元,2019年的人均收入為15000元,求人均收入的年增長率.若設人均收入的年增長率為x,根據(jù)題意列方程為()A. B.C. D.3.如圖是某貨站傳送貨物的機器的側面示意圖.,原傳送帶與地面的夾角為,為了縮短貨物傳送距離,工人師傅欲增大傳送帶與地面的夾角,使其由改為,原傳送帶長為.則新傳送帶的長度為()A. B. C. D.無法計算4.如圖,某小區(qū)計劃在一塊長為31m,寬為10m的矩形空地上修建三條同樣寬的道路,剩余的空地上種植草坪,使草坪的面積為570m1.若設道路的寬為xm,則下面所列方程正確的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5705.在中,,,,則直角邊的長是()A. B. C. D.6.如圖,某停車場人口的欄桿,從水平位置AB繞點O旋轉到A'B′的位置已知AO=4m,若欄桿的旋轉角∠AOA′=50°時,欄桿A端升高的高度是()A. B.4sin50° C. D.4cos50°7.拋物線y=ax2+bx+c(a≠1)如圖所示,下列結論:①abc<1;②點(﹣3,y1),(1,y2)都在拋物線上,則有y1>y2;③b2>(a+c)2;④2a﹣b<1.正確的結論有()A.4個 B.3個 C.2個 D.1個8.如圖,在△ABC中,點D、E分別在AB、AC邊上,DE∥BC,若AD=1,BD=2,則的值為()A. B. C. D.9.用配方法解方程x2+3=4x,配方后的方程變?yōu)?)A.(x-2)2=7 B.(x+2)2=1C.(x-2)2=1 D.(x+2)2=210.如圖,從一塊直徑為的圓形鐵皮上剪出一個圓心角為90°的扇形.則此扇形的面積為()A. B. C. D.11.如圖,已知正方形ABCD,將對角線BD繞著點B逆時針旋轉,使點D落在CB的延長線上的D′點處,那么sin∠AD′B的值是()A. B. C. D.12.把二次函數(shù)化為的形式是A. B.C. D.二、填空題(每題4分,共24分)13.如圖,點B是反比例函數(shù)y=(x>0)的圖象上任意一點,AB∥x軸并交反比例函數(shù)y=﹣(x<0)的圖象于點A,以AB為邊作平行四邊形ABCD,其中C、D在x軸上,則平行四邊形ABCD的面積為_____.14.《孫子算經(jīng)》是我國古代重要的數(shù)學著作,成書于約一千五百年前,其中有道歌謠算題:“今有竿不知其長,量得影長一丈五尺,立一標桿,長一尺五寸,影長五寸,問桿長幾何?”歌謠的意思是:有一根竹竿不知道有多長,量出它在太陽下的影子長一丈五,同時立一根一尺五的小標桿,它的影長五寸(提示:仗和尺是古代的長度單位,1丈=10尺,1尺=10寸),可以求出竹竿的長為_____尺.15.若菱形的兩條對角線長分別是6㎝和8㎝,則該菱形的面積是㎝1.16.如圖,為了測量水塘邊A、B兩點之間的距離,在可以看到的A、B的點E處,取AE、BE延長線上的C、D兩點,使得CD∥AB,若測得CD=5m,AD=15m,ED=3m,則A、B兩點間的距離為_____m.17.如圖,在平面直角坐標系中,邊長為6的正六邊形ABCDEF的對稱中心與原點O重合,點A在x軸上,點B在反比例函數(shù)位于第一象限的圖象上,則k的值為.18.在如圖所示的電路圖中,當隨機閉合開關,,中的兩個時,能夠讓燈泡發(fā)光的概率為________.三、解答題(共78分)19.(8分)動畫片《小豬佩奇》分靡全球,受到孩子們的喜愛.現(xiàn)有4張《小豬佩奇》角色卡片,分別是A佩奇,B喬治,C佩奇媽媽,D佩奇爸爸(四張卡片除字母和內容外,其余完全相同).姐弟兩人做游戲,他們將這四張卡片混在一起,背面朝上放好.(1)姐姐從中隨機抽取一張卡片,恰好抽到A佩奇的概率為;(2)若兩人分別隨機抽取一張卡片(不放回),請用列表或畫樹狀圖的分方法求出恰好姐姐抽到A佩奇弟弟抽到B喬治的概率.20.(8分)如圖,AC為⊙O的直徑,B為⊙O上一點,∠ACB=30°,延長CB至點D,使得CB=BD,過點D作DE⊥AC,垂足E在CA的延長線上,連接BE.(1)求證:BE是⊙O的切線;(2)當BE=3時,求圖中陰影部分的面積.21.(8分)如圖,海面上一艘船由西向東航行,在處測得正東方向上一座燈塔的最高點的仰角為,再向東繼續(xù)航行到達處,測得該燈塔的最高點的仰角為.根據(jù)測得的數(shù)據(jù),計算這座燈塔的高度(結果取整數(shù)).參考數(shù)據(jù):,,.22.(10分)⊙O直徑AB=12cm,AM和BN是⊙O的切線,DC切⊙O于點E且交AM于點D,交BN于點C,設AD=x,BC=y(tǒng).(1)求y與x之間的關系式;(2)x,y是關于t的一元二次方程2t2﹣30t+m=0的兩個根,求x,y的值;(3)在(2)的條件下,求△COD的面積.23.(10分)如圖,在A港口的正東方向有一港口B.某巡邏艇從A港口沿著北偏東60°方向巡邏,到達C處時接到命令,立刻在C處沿東南方向以20海里/小時的速度行駛2小時到達港口B.求A,B兩港之間的距離(結果保留根號).24.(10分)某公司開發(fā)一種新的節(jié)能產(chǎn)品,工作人員對銷售情況進行了調查,圖中折線表示月銷售量(件)與銷售時間(天)之間的函數(shù)關系,已知線段表示函數(shù)關系中,時間每增加天,月銷售量減少件,求與間的函數(shù)表達式.25.(12分)在學校組織的科學素養(yǎng)競賽中,每班參加比賽的人數(shù)相同,成績分為、、、四個等級,其中相應等級的得分依次為分,分,分,分.馬老師將九年級一班和二班的成績整理并繪制成如下的統(tǒng)計圖:請你根據(jù)以上提供的信息解答下列問題:(1)此次競賽中二班成績在分及其以上的人數(shù)是_______人;(2)補全下表中、、的值:平均數(shù)(分)中位數(shù)(分)眾數(shù)(分)方差一班二班(3)學校準備在這兩個班中選一個班參加市級科學素養(yǎng)競賽,你建議學校選哪個班參加?說說你的理由.26.(1)如圖①,AB為⊙O的直徑,點P在⊙O上,過點P作PQ⊥AB,垂足為點Q.說明△APQ∽△ABP;(2)如圖②,⊙O的半徑為7,點P在⊙O上,點Q在⊙O內,且PQ=4,過點Q作PQ的垂線交⊙O于點A、B.設PA=x,PB=y(tǒng),求y與x的函數(shù)表達式.

參考答案一、選擇題(每題4分,共48分)1、D【分析】首先將代入二次函數(shù),求出,然后利用根的判別式和求根公式即可判定的取值范圍.【詳解】將代入二次函數(shù),得∴∴方程為∴∵∴故答案為D.【點睛】此題主要考查二次函數(shù)與一元二次方程的綜合應用,熟練掌握,即可解題.2、D【分析】根據(jù)“每年的人均收入上一年的人均收入(1年增長率)”即可得.【詳解】由題意得:2018年的人均收入為元2019年的人均收入為元則故選:D.【點睛】本題考查了列一元二次方程,理解題意,正確找出等式關系是解題關鍵.3、B【分析】根據(jù)已知條件,在中,求出AD的長,再在中求出AC的值.【詳解】,,=8即即故選B.【點睛】本題考查了解直角三角形的應用,熟練掌握特殊角的三角函數(shù)值是解題的關鍵.4、A【解析】六塊矩形空地正好能拼成一個矩形,設道路的寬為xm,根據(jù)草坪的面積是570m1,即可列出方程:(31?1x)(10?x)=570,故選A.5、B【分析】根據(jù)余弦的定義求解.【詳解】解:∵在Rt△ABC中,∠C=90°,cosB=,

∴BC=10cos40°.

故選:B.【點睛】本題考查解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.6、B【分析】過點A'作AO的垂線,則垂線段為高度h,可知AO=A'O,則高度h=A'O×sin50°,即為答案B.【詳解】解:欄桿A端升高的高度=AO?sin∠AOA′=4×sin50°,故選:B.【點睛】本題的考點是特殊三角形的三角函數(shù).方法是熟記特殊三角形的三角函數(shù).7、B【分析】利用拋物線開口方向得到a>1,利用拋物線的對稱軸在y軸的左側得到b>1,利用拋物線與y軸的交點在x軸下方得到c<1,則可對①進行判斷;通過對稱軸的位置,比較點(-3,y1)和點(1,y2)到對稱軸的距離的大小可對②進行判斷;由于(a+c)2-b2=(a+c-b)(a+c+b),而x=1時,a+b+c>1;x=-1時,a-b+c<1,則可對③進行判斷;利用和不等式的性質可對④進行判斷.【詳解】∵拋物線開口向上,∴a>1,∵拋物線的對稱軸在y軸的左側,∴a、b同號,∴b>1,∵拋物線與y軸的交點在x軸下方,∴c<1,∴abc<1,所以①正確;∵拋物線的對稱軸為直線x=﹣,而﹣1<﹣<1,∴點(﹣3,y1)到對稱軸的距離比點(1,y2)到對稱軸的距離大,∴y1>y2,所以②正確;∵x=1時,y>1,即a+b+c>1,x=﹣1時,y<1,即a﹣b+c<1,∴(a+c)2﹣b2=(a+c﹣b)(a+c+b)<1,∴b2>(a+c)2,所以③正確;∵﹣1<﹣<1,∴﹣2a<﹣b,∴2a﹣b>1,所以④錯誤.故選:B.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系:二次項系數(shù)a決定拋物線的開口方向和大?。攁>1時,拋物線向上開口;當a<1時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時,對稱軸在y軸左;當a與b異號時,對稱軸在y軸右.常數(shù)項c決定拋物線與y軸交點:拋物線與y軸交于(1,c).拋物線與x軸交點個數(shù)由判別式確定:△=b2-4ac>1時,拋物線與x軸有2個交點;△=b2-4ac=1時,拋物線與x軸有1個交點;△=b2-4ac<1時,拋物線與x軸沒有交點.8、B【解析】試題分析:∵DE∥BC,∴,∵,∴.故選B.考點:平行線分線段成比例.9、C【分析】將方程常數(shù)項移到右邊,未知項移到左邊,然后兩邊都加上4,左邊化為完全平方式,右邊合并即可得到結果.【詳解】x2+3=4x,整理得:x2-4x=-3,配方得:x2-4x+4=4-3,即(x-2)2=1.故選C.【點睛】此題考查了解一元二次方程-配方法,利用此方法解方程時,首先將方程常數(shù)項移到右邊,未知項移到左邊,二次項系數(shù)化為1,然后方程兩邊都加上一次項系數(shù)一半的平方,左邊化為完全平方式,開方即可求出解.10、A【解析】分析:連接AC,根據(jù)圓周角定理得出AC為圓的直徑,解直角三角形求出AB,根據(jù)扇形面積公式求出即可.詳解:連接AC.∵從一塊直徑為2m的圓形鐵皮上剪出一個同心角為90°的扇形,即∠ABC=90°,∴AC為直徑,即AC=2m,AB=BC.∵AB2+BC2=22,∴AB=BC=m,∴陰影部分的面積是=(m2).故選A.點睛:本題考查了圓周角定理和扇形的面積計算,能熟記扇形的面積公式是解答此題的關鍵.11、A【分析】設,根據(jù)正方形的性質可得,再根據(jù)旋轉的性質可得的長,然后由勾股定理可得的長,從而根據(jù)正弦的定義即可得.【詳解】設由正方形的性質得由旋轉的性質得在中,則故選:A.【點睛】本題考查了正方形的性質、旋轉的性質、正弦的定義等知識點,根據(jù)旋轉的性質得出的長是解題關鍵.12、B【分析】利用配方法先提出二次項系數(shù),在加上一次項系數(shù)的一半的平方來湊完全平方式,把一般式轉化為頂點式.【詳解】原式=(x2+4x?4)=(x2+4x+4?8)=(x+2)2?2故選:B.【點睛】此題考查了二次函數(shù)一般式與頂點式的轉換,解答此類問題時只要把函數(shù)式直接配方即可求解.二、填空題(每題4分,共24分)13、1.【分析】設A的縱坐標是b,則B的縱坐標也是b,即可求得AB的橫坐標,則AB的長度即可求得,然后利用平行四邊形的面積公式即可求解【詳解】設A的縱坐標是b,則B的縱坐標也是b把y=b代入y=得,b=則x=,即B的橫坐標是同理可得:A的橫坐標是:則AB=-()=則S=×b=1.故答案為1【點睛】此題考查反比例函數(shù)系數(shù)k的幾何意義,解題關鍵在于設A的縱坐標為b14、3【分析】根據(jù)同一時刻物高與影長成正比可得出結論.【詳解】解:設竹竿的長度為x尺,∵竹竿的影長=一丈五尺=15尺,標桿長=一尺五寸=1.5尺,影長五寸=2.5尺,∴,解得x=3(尺).故答案為:3.【點睛】本題考查的是同一時刻物高與影長成正比,在解題時注意單位要統(tǒng)一.15、14【解析】已知對角線的長度,根據(jù)菱形的面積計算公式即可計算菱形的面積.解:根據(jù)對角線的長可以求得菱形的面積,根據(jù)S=ab=×6×8=14cm1,故答案為14.16、20m【詳解】∵CD∥AB,∴△ABE∽△DCE,∴,∵AD=15m,ED=3m,∴AE=AD-ED=12m,又∵CD=5m,∴,∴3AB=60,∴AB=20m.故答案為20m.17、【解析】試題分析:連接OB,過B作BM⊥OA于M,∵六邊形ABCDEF是正六邊形,∴∠AOB=10°.∵OA=OB,∴△AOB是等邊三角形.∴OA=OB=AB=1.∴BM=OB?sin∠BOA=1×sin10°=,OM=OB?COS10°=2.∴B的坐標是(2,).∵B在反比例函數(shù)位于第一象限的圖象上,∴k=2×=.18、【分析】分析電路圖知:要讓燈泡發(fā)光,必須閉合,同時,中任意一個關閉時,滿足條件,從而求算概率.【詳解】分析電路圖知:要讓燈泡發(fā)光,必須閉合,同時,中任意一個關閉時,滿足:一共有:,,、,、,三種情況,滿足條件的有,、,兩種,∴能夠讓燈泡發(fā)光的概率為:故答案為:.【點睛】本題考查概率運算,分析出所有可能的結果,尋找出滿足條件的情況是解題關鍵.三、解答題(共78分)19、(1);(2)【解析】(1)直接利用求概率公式計算即可;(2)畫樹狀圖(或列表格)列出所有等可能結果,根據(jù)概率公式即可解答.【詳解】(1);(2)方法1:根據(jù)題意可畫樹狀圖如下:方法2:根據(jù)題意可列表格如下:弟弟姐姐ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表(樹狀圖)可知,總共有12種結果,每種結果出現(xiàn)的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B喬治的結果有1種:(A,B).∴P(姐姐抽到A佩奇,弟弟抽到B喬治)【點睛】本題考查的是用列表法或樹狀圖法求概率,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解決問題用到概率公式:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)證明見解析;(2)【解析】(1)連接,根據(jù)和都是等腰三角形,即可得到再根據(jù)三角形的內角和得到進而得出是⊙的切線;(2)根據(jù),,可以得到半圓的面積,即可的面積,即可得到陰影部分的面積.【詳解】解:(1)如圖所示,連接,∵,∴,∵,,∴中,,∴,∴中,,∴,∴是⊙的切線;(2)當時,,∵為⊙的直徑,∴,又∵,∴,∴,∴陰影部分的面積=半圓的面積-的面積=.21、這座燈塔的高度約為45m.【分析】在Rt△ADC和Rt△BDC中,根據(jù)三角函數(shù)AD、BD就可以用CD表示出來,再根據(jù)就得到一個關于DC的方程,解方程即可.【詳解】解:如圖,根據(jù)題意,,,,.∵在中,,∴.∵在中,,∴.又,∴.∴.答:這座燈塔的高度約為45m.【點睛】本題考查了解直角三角形的應用-----方向角的問題,列出關于CD的方程是解答本題的關鍵,結合航海中的實際問題,將解直角三角形的相關知識有機結合,體現(xiàn)了數(shù)學應用于實際生活的思想.22、(1)y=;(2)或;(3)1.【分析】(1)如圖,作DF⊥BN交BC于F,根據(jù)切線長定理得,則DC=DE+CE=x+y,在中根據(jù)勾股定理,就可以求出y與x之間的關系式.(2)由(1)求得,由根與系數(shù)的關系求得的值,通過解一元二次方程即可求得x,y的值.(3)如圖,連接OD,OE,OC,由AM和BN是⊙O的切線,DC切⊙O于點E,得到,,,推出S△AOD=S△ODE,S△OBC=S△COE,即可得出答案.【詳解】(1)如圖,作DF⊥BN交BC于F;∵AM、BN與⊙O切于點定A、B,∴AB⊥AM,AB⊥BN.又∵DF⊥BN,∴∠BAD=∠ABC=∠BFD=90°,∴四邊形ABFD是矩形,∴BF=AD=x,DF=AB=12,∵BC=y(tǒng),∴FC=BC﹣BF=y(tǒng)﹣x;∵DE切⊙O于E,∴DE=DA=xCE=CB=y(tǒng),則DC=DE+CE=x+y,在Rt△DFC中,由勾股定理得:(x+y)2=(y﹣x)2+122,整理為:y=,∴y與x的函數(shù)關系式是y=.(2)由(1)知xy=36,x,y是方程2x2﹣30x+a=0的兩個根,∴根據(jù)韋達定理知,xy=,即a=72;∴原方程為x2﹣15x+36=0,解得或.(3)如圖,連接OD,OE,OC,∵AD,BC,CD是⊙O的切線,∴OE⊥CD,AD=DE,BC=CE,∴S△AOD=S△ODE,S△OBC=S△COE,∴S△COD=××(3+12)×12=1.【點睛】本題考查了圓切線的綜合問題,掌握切線長定理、勾股定理、一元二次方程的解法是解題的關鍵.23、A,B間的距離為(20+20)海里.【分析】過點C作CD⊥AB于點D,根據(jù)題意可得,∠ACD=60°,∠BCD=45°,BC=20×2=40,然后根據(jù)銳角三角函數(shù)即可求出A,B間的距離.【詳解】解:如圖,過點C作CD⊥AB于點D,根據(jù)題意可知:∠ACD=60°,∠BCD=45°,BC=20×2=40,∴在Rt△BCD中,CD=BD=BC=20,在Rt△ACD中,AD=CD?tan60°=20,∴AB=AD+BD=20+20(海里).答:A,B間的距離為(20+20)海里.【點睛】本題考查了解直角三角形的應用-方向角問題,解題的關鍵是掌握方向角的定義.24、.【分析】由時間每增加1天日銷售量減少5件結合第18天的日銷售量為360件,即可求出第19天的日銷售量,再根據(jù)點的坐標,利用待定系數(shù)法可求出直線OD、DE的函數(shù)關系式,即可找出y與x之間的函數(shù)關系式;【詳解】當時,設直線OD的解析式為將代入得,∴,∴直線OD的解析式為:,當時,根據(jù)題意“時間每增加天,月銷售量減少件”,則第19天的日銷售量為:360-5=355,設直線DE的解析式為,將,代入得,解得:,∴直線DE的解析式為,∴與間的函數(shù)表達式為:【點睛】本題考查了一次函數(shù)的應用,解題的關鍵是:根據(jù)數(shù)量間的關系列式計算;根據(jù)點的坐標,利用待定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論