




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.將拋物線向上平移個單位長度,再向右平移個單位長度,得到的拋物線為()A. B.C. D.2.下列銀行標志圖片中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.3.如圖,△ABC的頂點都是正方形網(wǎng)格中的格點,則sin∠ABC等于(
)A. B. C. D.4.已知一組數(shù)據(jù)共有個數(shù),前面?zhèn)€數(shù)的平均數(shù)是,后面?zhèn)€數(shù)的平均數(shù)是,則這個數(shù)的平均數(shù)是()A. B. C. D.5.已知菱形的邊長為,若對角線的長為,則菱形的面積為()A. B. C. D.6.的絕對值是()A. B.2020 C. D.7.下列事件中,是必然事件的是()A.購買一張彩票,中獎 B.射擊運動員射擊一次,命中靶心C.經(jīng)過有交通信號燈的路口,遇到紅燈 D.任意畫一個三角形,其內(nèi)角和是180°8.如圖⊙O的直徑垂直于弦,垂足是,,,的長為()A. B.4 C. D.89.如圖,正方形的邊長是3,,連接、交于點,并分別與邊、交于點、,連接,下列結論:①;②;③;④當時,.正確結論的個數(shù)為()A.1個 B.2個 C.3個 D.4個10.如圖,在Rt△ABC中,∠C=90°,∠B=30°,BC="4"cm,以點C為圓心,以2cm的長為半徑作圓,則⊙C與AB的位置關系是().A.相離 B.相切 C.相交 D.相切或相交11.如圖,A、D是⊙O上的兩點,BC是直徑,若∠D=40°,則∠ACO=()A.80° B.70° C.60° D.50°12.在Rt△ABC中,∠C=90°,若斜邊AB是直角邊BC的3倍,則tanB的值是()A. B.3 C. D.2二、填空題(每題4分,共24分)13.如圖,在平面直角坐標系中,點,點,作第一個正方形且點在上,點在上,點在上;作第二個正方形且點在上,點在上,點在上…,如此下去,其中縱坐標為______,點的縱坐標為______.14.小亮和他弟弟在陽光下散步,小亮的身高為米,他的影子長米.若此時他的弟弟的影子長為米,則弟弟的身高為________米.15.拋物線y=(x﹣3)2﹣2的頂點坐標是_____.16.如圖,起重機臂長,露在水面上的鋼纜長,起重機司機想看看被打撈的沉船情況,在豎直平面內(nèi)把起重機臂逆時針轉(zhuǎn)動到的位置,此時露在水面上的鋼纜的長度是___________.17.若方程x2﹣2x﹣4=0的兩個實數(shù)根為a,b,則-a2-b2的值為_________。18.若扇形的半徑長為3,圓心角為60°,則該扇形的弧長為___.三、解答題(共78分)19.(8分)如圖,△ABC中,AB=AC=2,∠BAC=120°,D為BC邊上的點,將DA繞D點逆時針旋轉(zhuǎn)120°得到DE.(1)如圖1,若AD=DC,則BE的長為,BE2+CD2與AD2的數(shù)量關系為;(2)如圖2,點D為BC邊山任意一點,線段BE、CD、AD是否依然滿足(1)中的關系,試證明;(3)M為線段BC上的點,BM=1,經(jīng)過B、E、D三點的圓最小時,記D點為D1,當D點從D1處運動到M處時,E點經(jīng)過的路徑長為.20.(8分)如圖,中,,以為直徑作,交于點,交的延長線于點,連接,.(1)求證:是的中點;(2)若,求的長.21.(8分)李明從市場上買回一塊矩形鐵皮,他將此矩形鐵皮的四個角各剪去一個邊長為1米的正方形后,剩下的部分剛好能圍成一個容積為15立方米的無蓋長方體運輸箱,且此長方體運輸箱底面的長比寬多2米,現(xiàn)已知購買這種鐵皮每平方米需20元,問購買這張矩形鐵皮共花了多少錢?22.(10分)拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.(1)求此拋物線的解析式;(2)已知點D在第四象限的拋物線上,求點D關于直線BC對稱的點D’的坐標;(3)在(2)的條件下,連結BD,問在x軸上是否存在點P,使,若存在,請求出P點的坐標;若不存在,請說明理由.23.(10分)如圖,已知△ABC的頂點A、B、C的坐標分別是A(﹣1,﹣1)、B(﹣4,﹣3)、C(﹣4,﹣1).(1)畫出△ABC關于原點O中心對稱的圖形△A1B1C1;(2)將△ABC繞點A按順時針方向旋轉(zhuǎn)90°后得到△AB2C2,畫出△AB2C2并求線段AB掃過的面積.24.(10分)已知拋物線的頂點為,且過點.直線與軸相交于點.(1)求該拋物線的解析式;(2)以線段為直徑的圓與射線相交于點,求點的坐標.25.(12分)若矩形的長為,寬為,面積保持不變,下表給出了與的一些值求矩形面積.(1)請你根據(jù)表格信息寫出與之間的函數(shù)關系式;(2)根據(jù)函數(shù)關系式完成下表184226.用“☆”定義一種新運算:對于任意有理數(shù)a和b,規(guī)定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(-2)☆3的值;(2)若=8,求a的值.
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)拋物線的平移規(guī)律:上加下減,左加右減解答即可.【詳解】解:將拋物線向上平移個單位長度,再向右平移個單位長度,得到的拋物線為:.故選:B.【點睛】本題考查了拋物線的平移,屬于基礎題型,熟練掌握拋物線的平移規(guī)律是解題的關鍵.2、B【解析】由題意根據(jù)軸對稱圖形與中心對稱圖形的概念進行依次判斷即可.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B、是軸對稱圖形,也是中心對稱圖形,故本選項正確;C、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;D、不是軸對稱圖形,也不是中心對稱圖形,故本選項錯誤.故選:B.【點睛】本題考查中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.3、C【解析】試題解析:設正方形網(wǎng)格每個小正方形邊長為1,則BC邊上的高為2,則,.故本題應選C.4、C【分析】由題意可以求出前14個數(shù)的和,后6個數(shù)的和,進而得到20個數(shù)的總和,從而求出20個數(shù)的平均數(shù).【詳解】解:由題意得:(10×14+15×6)÷20=11.5,故選:C.【點睛】此題考查平均數(shù)的意義和求法,求出這些數(shù)的總和,再除以總個數(shù)即可..5、B【分析】先求出對角線AC的長度,再根據(jù)“菱形的面積等于對角線乘積的一半”,即可得出答案.【詳解】根據(jù)題意可得:AB=BC=CD=AD=13cm,BD=10cm∵ABCD為菱形∴BD⊥AC,BO=DO=AO=AC=2AO=24cm∴故答案選擇B.【點睛】本題考查的是菱形,難度適中,需要熟練掌握菱形面積的兩種求法.6、B【分析】根據(jù)絕對值的定義直接解答.【詳解】解:根據(jù)絕對值的概念可知:|?2121|=2121,故選:B.【點睛】本題考查了絕對值.解題的關鍵是掌握絕對值的概念,注意掌握一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);1的絕對值是1.7、D【分析】先能肯定它一定會發(fā)生的事件稱為必然事件,事先能肯定它一定不會發(fā)生的事件稱為不可能事件,必然事件和不可能事件都是確定的.【詳解】A.購買一張彩票中獎,屬于隨機事件,不合題意;B.射擊運動員射擊一次,命中靶心,屬于隨機事件,不合題意;C.經(jīng)過有交通信號燈的路口,遇到紅燈,屬于隨機事件,不合題意;D.任意畫一個三角形,其內(nèi)角和是180°,屬于必然事件,符合題意;故選D.【點睛】本題主要考查了必然事件,事先能肯定它一定會發(fā)生的事件稱為必然事件.8、C【詳解】∵直徑AB垂直于弦CD,∴CE=DE=CD,∵∠A=22.5°,∴∠BOC=45°,∴OE=CE,設OE=CE=x,∵OC=4,∴x2+x2=16,解得:x=2,即:CE=2,∴CD=4,故選C.9、D【分析】由四邊形ABCD是正方形,得到AD=BC=AB,∠DAB=∠ABC=90°,即可證明△DAP≌△ABQ,根據(jù)全等三角形的性質(zhì)得到∠P=∠Q,根據(jù)余角的性質(zhì)得到AQ⊥DP;故①正確;根據(jù)相似三角形的性質(zhì)得到AO2=OD?OP,故②正確;根據(jù)△CQF≌△BPE,得到S△CQF=S△BPE,根據(jù)△DAP≌△ABQ,得到S△DAP=S△ABQ,即可得到S△AOD=S四邊形OECF;故③正確;根據(jù)相似三角形的性質(zhì)得到BE的長,進而求得QE的長,證明△QOE∽△POA,根據(jù)相似三角形對應邊成比例即可判斷④正確,即可得到結論.【詳解】∵四邊形ABCD是正方形,∴AD=BC=AB,∠DAB=∠ABC=90°.∵BP=CQ,∴AP=BQ.在△DAP與△ABQ中,∵,∴△DAP≌△ABQ,∴∠P=∠Q.∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正確;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD?OP.故②正確;在△CQF與△BPE中,∵,∴△CQF≌△BPE,∴S△CQF=S△BPE.∵△DAP≌△ABQ,∴S△DAP=S△ABQ,∴S△AOD=S四邊形OECF;故③正確;∵BP=1,AB=3,∴AP=1.∵∠P=∠P,∠EBP=∠DAP=90°,∴△PBE∽△PAD,∴,∴BE,∴QE,∵∠Q=∠P,∠QOE=∠POA=90°,∴△QOE∽△POA,∴,∴,故④正確.故選:D.【點睛】本題考查了相似三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),正方形的性質(zhì),熟練掌握全等三角形的判定和性質(zhì)是解答本題的關鍵.10、B【分析】作CD⊥AB于點D.根據(jù)三角函數(shù)求CD的長,與圓的半徑比較,作出判斷.【詳解】解:作CD⊥AB于點D.
∵∠B=30°,BC=4cm,∴即CD等于圓的半徑.
∵CD⊥AB,
∴AB與⊙C相切.
故選:B.11、D【分析】根據(jù)圓周角的性質(zhì)可得∠ABC=∠D,再根據(jù)直徑所對圓周角是直角,即可得出∠ACO的度數(shù).【詳解】∵∠D=40°,∴∠AOC=2∠D=80°,∵OA=OC,∴∠ACO=∠OAC=(180°﹣∠AOC)=50°,故選:D.【點睛】本題考查圓周角的性質(zhì),關鍵在于熟練掌握圓周角的性質(zhì),特別是直徑所對的圓周角是直角.12、D【分析】先求出AC,再根據(jù)正切的定義求解即可.【詳解】設BC=x,則AB=3x,由勾股定理得,AC=,tanB===,故選D.考點:1.銳角三角函數(shù)的定義;2.勾股定理.二、填空題(每題4分,共24分)13、【分析】先確定直線AB的解析式,然后再利用正方形的性質(zhì)得出點C1和C2的縱坐標,歸納規(guī)律,然后按規(guī)律求解即可.【詳解】解:設直線AB的解析式y(tǒng)=kx+b則有:,解得:所以直線仍的解析式是:設C1的橫坐標為x,則縱坐標為∵正方形OA1C1B1∴x=y,即,解得∴點C1的縱坐標為同理可得:點C2的縱坐標為=∴點Cn的縱坐標為.故答案為:,.【點睛】本題屬于一次函數(shù)綜合題,主要考查了運用待定系數(shù)法求一次函數(shù)的解析式、正方形的性質(zhì)、一次函數(shù)圖象上點的坐標特點等知識,掌握數(shù)形結合思想是解答本題的關鍵.14、1.4【解析】∵同一時刻物高與影長成正比例,
∴1.75:2=弟弟的身高:1.6,
∴弟弟的身高為1.4米.故答案是:1.4.15、(3,﹣2)【分析】根據(jù)拋物線y=a(x﹣h)2+k的頂點坐標是(h,k)直接寫出即可.【詳解】解:拋物線y=(x﹣3)2﹣2的頂點坐標是(3,﹣2).故答案為(3,﹣2).【點睛】此題主要考查了二次函數(shù)的性質(zhì),關鍵是熟記:拋物線的頂點坐標是,對稱軸是.16、30m【解析】首先在Rt△ABC中,利用正弦值可推出∠CAB=45°,然后由轉(zhuǎn)動角度可得出∠C'AB'=60°,在Rt△C'AB'中利用60°的正弦即可求出B'C'.【詳解】再Rt△ABC中,∵∴∠CAB=45°起重機臂逆時針轉(zhuǎn)動到的位置后,∠C'AB'=∠CAB+15°=60°在Rt△C'AB'中,B'C'=m故答案為:30m.【點睛】本題考查了解直角三角形,熟練掌握直角三角形中的邊角關系是解題的關鍵.17、-12【分析】根據(jù)一元二次方程的解及根與系數(shù)的關系,得出兩根之和與兩根之積,再將待求式利用完全平方公式表示成關于兩根之和與兩根之積的式子,最后代入求值即可.【詳解】解:∵方程x2﹣2x﹣4=0的兩個實數(shù)根為,∴,∴=-4-8=-12.故答案為:-12.【點睛】本題考查了根與系數(shù)的關系以及一元二次方程的解,將待求式利用完全平方公式表示成關于兩根之和與兩根之積的式子是解題的關鍵.18、【分析】根據(jù)弧長的公式列式計算即可.【詳解】∵一個扇形的半徑長為3,且圓心角為60°,
∴此扇形的弧長為=π.
故答案為:π.【點睛】此題考查弧長公式,熟記公式是解題關鍵.三、解答題(共78分)19、(1)1;BE1+CD1=4AD1;(1)能滿足(1)中的結論,見解析;(3)1【分析】(1)依據(jù)旋轉(zhuǎn)性質(zhì)可得:DE=DA=CD,∠BDE=∠ADB=60°,再證明:△BDE≌△BDA,利用勾股定理可得結論;(1)將△ACD繞點A順時針旋轉(zhuǎn)110°得到△ABD′,再證明:∠D′BE=∠D′AE=90°,利用勾股定理即可證明結論仍然成立;(3)從(1)中發(fā)現(xiàn):∠CBE=30°,即:點D運動路徑是線段;分別求出點D位于D1時和點D運動到M時,對應的BE長度即可得到結論.【詳解】解:(1)如圖1,∵AB=AC,∠BAC=110°,∴∠ABC=∠ACB=30°,∵AD=DC∴∠CAD=∠ACB=30°,∠ADB=∠CAD+∠ACB=60°,∴∠BAD=90°,由旋轉(zhuǎn)得:DE=DA=CD,∠BDE=∠ADB=60°∴△BDE≌△BDA(SAS)∴∠BED=∠BAD=90°,BE=AB=∴BE1+CD1=BE1+DE1=BD1∵=cos∠ADB=cos60°=∴BD=1AD∴BE1+CD1=4AD1;故答案為:;BE1+CD1=4AD1;(1)能滿足(1)中的結論.如圖1,將△ACD繞點A順時針旋轉(zhuǎn)110°得到△ABD′,使AC與AB重合,∵∠DAD′=110°,∠BAD′=∠CAD,∠ABD′=∠ACB=30°,AD′=AD=DE,∠DAE=∠AED=30°,BD′=CD,∠AD′B=∠ADC∴∠D′AE=90°∵∠ADB+∠ADC=180°∴∠ADB+∠AD′B=180°∴A、D、B、D′四點共圓,同理可證:A、B、E、D四點共圓,A、E、B、D′四點共圓;∴∠D′BE=90°∴BE1+BD′1=D′E1∵在△AD′E中,∠AED′=30°,∠EAD′=90°∴D′E=1AD′=1AD∴BE1+BD′1=(1AD)1=4AD1∴BE1+CD1=4AD1.(3)由(1)知:經(jīng)過B、E、D三點的圓必定經(jīng)過D′、A,且該圓以D′E為直徑,該圓最小即D′E最小,∵D′E=1AD∴當AD最小時,經(jīng)過B、E、D三點的圓最小,此時,AD⊥BC如圖3,過A作AD1⊥BC于D1,∵∠ABC=30°∴BD1=AB?cos∠ABC=cos30°=3,AD1=∴D1M=BD1﹣BM=3﹣1=1由(1)知:在D運動過程中,∠CBE=30°,∴點D運動路徑是線段;當點D位于D1時,由(1)中結論得:,∴BE1=當點D運動到M時,易求得:BE1=∴E點經(jīng)過的路徑長=BE1+BE1=1故答案為:1.【點睛】本題考查的是圓的綜合,綜合性很強,難度系數(shù)較大,運用到了全等和勾股定理等相關知識需要熟練掌握相關基礎知識.20、(1)詳見解析;(2).【分析】(1)根據(jù)題意得出,再根據(jù)三線合一即可證明;(2)在中,根據(jù)已知可求得,,,再證明,得出,代入數(shù)值即可得出CE.【詳解】(1)證明:是的直徑,,又是中點.(2)解:,,,,,,.,.【點睛】本題考查了相似三角形的判定及性質(zhì),熟練掌握定理是解題的關鍵.21、購買這張矩形鐵皮共花了700元錢【解析】設矩形鐵皮的寬為x米,則長為米,根據(jù)長方形的體積公式結合長方體運輸箱的容積為15立方米,即可得出關于x的一元二次方程,解之取其正值即可得出x的值,再根據(jù)矩形的面積公式結合鐵皮的單價即可求出購買這張矩形鐵皮的總錢數(shù).【詳解】設矩形鐵皮的寬為x米,則長為米,根據(jù)題意得:,整理,得:(不合題意,舍去),∴20x(x+2)=20×5×7=700.答:購買這張矩形鐵皮共花了700元錢.【點睛】本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.22、(1)(2)(0,-1)(3)(1,0)(9,0)【解析】(1)將A(?1,0)、C(0,?3)兩點坐標代入拋物線y=ax2+bx?3a中,列方程組求a、b的值即可;(2)將點D(m,?m?1)代入(1)中的拋物線解析式,求m的值,再根據(jù)對稱性求點D關于直線BC對稱的點D'的坐標;(3)分兩種情形①過點C作CP∥BD,交x軸于P,則∠PCB=∠CBD,②連接BD′,過點C作CP′∥BD′,交x軸于P′,分別求出直線CP和直線CP′的解析式即可解決問題.【詳解】解:(1)將A(?1,0)、C(0,?3)代入拋物線y=ax2+bx?3a中,得,解得∴y=x2?2x?3;(2)將點D(m,?m?1)代入y=x2?2x?3中,得m2?2m?3=?m?1,解得m=2或?1,∵點D(m,?m?1)在第四象限,∴D(2,?3),∵直線BC解析式為y=x?3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3?2=1,∴點D關于直線BC對稱的點D'(0,?1);(3)存在.滿足條件的點P有兩個.①過點C作CP∥BD,交x軸于P,則∠PCB=∠CBD,∵直線BD解析式為y=3x?9,∵直線CP過點C,∴直線CP的解析式為y=3x?3,∴點P坐標(1,0),②連接BD′,過點C作CP′∥BD′,交x軸于P′,∴∠P′CB=∠D′BC,根據(jù)對稱性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD,∵直線BD′的解析式為∵直線CP′過點C,∴直線CP′解析式為,∴P′坐標為(9,0),綜上所述,滿足條件的點P坐標為(1,0)或(9,0).【點睛】本題考查了二次函數(shù)的綜合運用.關鍵是由已知條件求拋物線解析式,根據(jù)拋物線的對稱性,直線BC的特殊性求點的坐標,學會分類討論,不能漏解.23、(1)見解析;(2)【分析】(1)分別作出A,B,C的對應點A1,B1,C1即可.(2)分別作出B,C的對應點B2,C2即可,再利用扇形的面積公式計算即可.【詳解】解(1)如圖,△A1B1C1即為所求.(2)如圖,△AB2C2即為所求.線段AB掃過的面積==【點睛】本題考查作圖旋轉(zhuǎn)變換,扇形的面積等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.24、(1);(2)或【分析】(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 酒店服務風險管理手冊
- 如何通過優(yōu)化HR流程提升企業(yè)核心競爭力試題及答案
- 綠化管理能力提升總結
- 2025至2030年毛條筒行業(yè)深度研究報告
- 2025至2030年微型直聯(lián)式無油潤滑空壓機項目投資價值分析報告
- 2025至2030年全球及中國裝飾混凝土行業(yè)市場分析及投資建議報告
- 2025至2030年中國容器秤行業(yè)發(fā)展預測及投資策略報告
- 2025至2030年中國3D人臉識別行業(yè)市場預測與投資規(guī)劃分析報告
- 2025至2030年90度卡式彎頭項目投資價值分析報告
- 2025年甲氧沙林片項目可行性研究報告
- 食品從業(yè)者工作服清洗消毒記錄
- 裝修單項項目確認單
- 華為員工準則手冊
- 分子生態(tài)學1分子標記
- 冷水機組工廠驗收FAT方案
- 2020版中國阿爾茨海默病癡呆診療指南(全文)
- 建筑施工企業(yè)三類人員變更申請表(外省市)
- 通用精美電子小報模板(35)
- 廣州大學畢業(yè)論文格式
- 《電工與電子技術基礎》試題庫及答案
- 畢業(yè)論文(設計)液壓滑臺設計
評論
0/150
提交評論