(浙大第四版)概率論與數(shù)理統(tǒng)計(jì)知識(shí)點(diǎn)總結(jié)_第1頁
(浙大第四版)概率論與數(shù)理統(tǒng)計(jì)知識(shí)點(diǎn)總結(jié)_第2頁
(浙大第四版)概率論與數(shù)理統(tǒng)計(jì)知識(shí)點(diǎn)總結(jié)_第3頁
(浙大第四版)概率論與數(shù)理統(tǒng)計(jì)知識(shí)點(diǎn)總結(jié)_第4頁
(浙大第四版)概率論與數(shù)理統(tǒng)計(jì)知識(shí)點(diǎn)總結(jié)_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第1章隨機(jī)事件及其概率(1)排列組合公式從m個(gè)人中挑出n個(gè)人進(jìn)行排列的可能數(shù)從m個(gè)人中挑出n個(gè)人進(jìn)行組合的可能數(shù)加法原理(兩種方法均能完成此事):m+n某件事由兩種方法來完成,第一種方法可由m種方法完成,第二種方(2)加法法可由n種方法來完成,則這件事可由m+n種方法來完成。和乘法原理乘法原理(兩個(gè)步驟分別不能完成這件事):m×n某件事由兩個(gè)步驟來完成,第一個(gè)步驟可由m種方法完成,第二個(gè)步驟可由n種方法來完成,則這件事可由m×n種方法來完成。(3)一些重復(fù)排列和非重復(fù)排列(有序)對(duì)立事件(至少有一個(gè))常見排列順序問題(4)隨機(jī)如果一個(gè)試驗(yàn)在相同條件下可以重復(fù)進(jìn)行,而每次試驗(yàn)的可能結(jié)果不止一個(gè),但在進(jìn)行一次試驗(yàn)之前卻不能斷言它出現(xiàn)哪個(gè)結(jié)果,則稱這試驗(yàn)和隨機(jī)事件種試驗(yàn)為隨機(jī)試驗(yàn)。試驗(yàn)的可能結(jié)果稱為隨機(jī)事件。在一個(gè)試驗(yàn)下,不管事件有多少個(gè),總可以從其中找出這樣一組事件,它具有如下性質(zhì):①每進(jìn)行一次試驗(yàn),必須發(fā)生且只能發(fā)生這一組中的一個(gè)事件;②任何事件,都是由這一組中的部分事件組成的。這樣一組事件中的每一個(gè)事件稱為基本事件,用來表示。(5)基本基本事件的全體,稱為試驗(yàn)的樣本空間,用表示。事件、樣本空間和事件一個(gè)事件就是由中的部分點(diǎn)(基本事件)組成的集合。通常用大寫字母A,B,C,…表示事件,它們是的子集。為必然事件,?為不可能事件。不可能事件(?)的概率為零,而概率為零的事件不一定是不可能事件;同理,必然事件(Ω)的概率為1,而概率為1的事件也不一定是必然事件。①關(guān)系:如果事件A的組成部分也是事件B的組成部分,(A發(fā)生必有事件B發(fā)生):如果同時(shí)有,,則稱事件A與事件B等價(jià),或稱A等于B:A=B。A、B中至少有一個(gè)發(fā)生的事件:AB,或者A+B。屬于A而不屬于B的部分所構(gòu)成的事件,稱為A與B的差,記為A-B,(6)事件也可表示為A-AB或者,它表示A發(fā)生而B不發(fā)生的事件。的關(guān)系與運(yùn)A、B同時(shí)發(fā)生:AB,或者AB。AB=?,則表示A與B不可能同時(shí)發(fā)生,稱事件A與事件B互不相容或者互斥?;臼录腔ゲ幌嗳菟愕?。-A稱為事件A的逆事件,或稱A的對(duì)立事件,記為。它表示A不發(fā)生的事件?;コ馕幢貙?duì)立。②運(yùn)算:結(jié)合率:A(BC)=(AB)CA∪(B∪C)=(A∪B)∪C分配率:(AB)∪C=(A∪C)∩(B∪C)(A∪B)∩C=(AC)∪(BC)德摩根率:,(7)概率設(shè)為樣本空間,為事件,對(duì)每一個(gè)事件都有一個(gè)實(shí)數(shù)P(A),若的公理化定滿足下列三個(gè)條件:義1°0≤P(A)≤1,2°P(Ω)=13°對(duì)于兩兩互不相容的事件,,…有常稱為可列(完全)可加性。則稱P(A)為事件的概率。1°,2°。(8)古典設(shè)任一事件,它是由組成的,則有概型P(A)==若隨機(jī)試驗(yàn)的結(jié)果為無限不可數(shù)并且每個(gè)結(jié)果出現(xiàn)的可能性均勻,同(9)幾何此隨機(jī)試驗(yàn)為幾何概型。對(duì)任一事件時(shí)樣本空間中的每一個(gè)基本事件可以使用一個(gè)有界區(qū)域來描述,則稱A,概型。其中L為幾何度量(長度、面積、體積)。(10)加法P(A+B)=P(A)+P(B)-P(AB)當(dāng)P(AB)=0時(shí),P(A+B)=P(A)+P(B)公式P(A-B)=P(A)-P(AB)(11)減法當(dāng)BA時(shí),P(A-B)=P(A)-P(B)公式當(dāng)A=Ω時(shí),P()=1-P(B)定義設(shè)A、B是兩個(gè)事件,且P(A)>0,則稱件下,事件B發(fā)生的條件概率,記為為事件A發(fā)生條(12)條件概率。條件概率是概率的一種,所有概率的性質(zhì)都適合于條件概率。例如P(Ω/B)=1P(/A)=1-P(B/A)(13)乘法乘法公式:更一般地,對(duì)事件A1,A2,…An,若P(A1A2…An-1)>0,則有公式…………。(14)獨(dú)立①兩個(gè)事件的獨(dú)立性性設(shè)事件、滿足的。,則稱事件、是相互獨(dú)立,則有若事件、相互獨(dú)立,且若事件、相互獨(dú)立,則可得到與、與、與也都相互獨(dú)立。必然事件和不可能事件?與任何事件都相互獨(dú)立。?與任何事件都互斥。②多個(gè)事件的獨(dú)立性設(shè)ABC是三個(gè)事件,如果滿足兩兩獨(dú)立的條件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)并且同時(shí)滿足P(ABC)=P(A)P(B)P(C)那么A、B、C相互獨(dú)立。對(duì)于n個(gè)事件類似。設(shè)事件1°滿足兩兩互不相容,,(15)全概2°,(分類討論的公式則有。設(shè)事件,,…,及滿足1°,,…,兩兩互不相容,>0,1,2,…,,2°,,(已經(jīng)知道結(jié)果求原因則(16)貝葉斯公式,i=1,2,…n。,,…,),通常叫先驗(yàn)概率。此公式即為貝葉斯公式。,(,(,,…,),通常稱為后驗(yàn)概率。貝葉斯公式反映了“因果”的概率規(guī)律,并作出了“由果朔因”的推斷。我們作了次試驗(yàn),且滿足◆每次試驗(yàn)只有兩種可能結(jié)果,發(fā)生或不發(fā)生;◆次試驗(yàn)是重復(fù)進(jìn)行的,即發(fā)生的概率每次均一樣;(17)伯努否是互不影響的。◆每次試驗(yàn)是獨(dú)立的,即每次試驗(yàn)發(fā)生與否與其他次試驗(yàn)發(fā)生與利概型這種試驗(yàn)稱為伯努利概型,或稱為重伯努利試驗(yàn)。用表示每次試驗(yàn)發(fā)生的概率,則發(fā)生的概率為,用表示重伯努利試驗(yàn)中出現(xiàn)次的概率,,。第二章隨機(jī)變量及其分布(1)離散型設(shè)離散型隨機(jī)變量的可能取值為Xk(k=1,2,…)且取各個(gè)值的概率,即隨機(jī)變量的事件(X=X)的概率為kP(X=xk)=pk,k=1,2,…,分布律則稱上式為離散型隨機(jī)變量的形式給出:的概率分布或分布律。有時(shí)也用分布列。顯然分布律應(yīng)滿足下列條件:(1),,(2)。(2)連續(xù)型設(shè)是隨機(jī)變量的分布函數(shù),若存在非負(fù)函數(shù),對(duì)任意實(shí)數(shù)隨機(jī)變量的,有分布密度,則稱為連續(xù)型隨機(jī)變量。稱為的概率密度函數(shù)或密度函數(shù),簡稱概率密度。密度函數(shù)具有下面4個(gè)性質(zhì):1°。2°。(3)離散與連續(xù)型隨機(jī)積分元在離散型隨機(jī)變量理論中所起的作用相類似。在連續(xù)型隨機(jī)變量理論中所起的作用與變量的關(guān)系(4)分布函設(shè)為隨機(jī)變量,是任意實(shí)數(shù),則函數(shù)數(shù)稱為隨機(jī)變量X的分布函數(shù),本質(zhì)上是一個(gè)累積函數(shù)??梢缘玫絏落入?yún)^(qū)間的概率。分布函數(shù)表示隨機(jī)變量落入?yún)^(qū)間(–∞,x]內(nèi)的概率。分布函數(shù)具有如下性質(zhì):1°2°;是單調(diào)不減的函數(shù),即時(shí),有;;3°4°5°,,即是右連續(xù)的;。對(duì)于離散型隨機(jī)變量,;對(duì)于連續(xù)型隨機(jī)變量,(5)八大分0-1分布。P(X=1)=p,P(X=0)=q布二項(xiàng)分布在重貝努里試驗(yàn)中,設(shè)事件是隨機(jī)變量,設(shè)為,則可能取值為發(fā)生的概率為。事件。發(fā)生的次數(shù),其中,則稱隨機(jī)變量服從參數(shù)為,的二項(xiàng)分布。記為。當(dāng)時(shí),,,這就是(0-1)分布,所以(0-1)分布是二項(xiàng)分布的特例。泊松分布設(shè)隨機(jī)變量的分布律為,,,則稱隨機(jī)變量服從參數(shù)為的泊松分布,記為或者P()。泊松分布為二項(xiàng)分布的極限分布(np=λ,n→∞)。超幾何分布隨機(jī)變量X服從參數(shù)為n,N,M的超幾何分布,記為H(n,N,M)。幾何分布均勻分布,其中p≥0,q=1-p。隨機(jī)變量X服從參數(shù)為p的幾何分布,記為G(p)。設(shè)隨機(jī)變量的值只落在[a,b]內(nèi),其密度函數(shù)在[a,b]上為常數(shù),即a≤x≤b其他,在[a,b]上服從均勻分布,記為X~U(a,b)。則稱隨機(jī)變量分布函數(shù)為a≤x≤b≤≤0,x<a,1,x>b。當(dāng)a≤x1<x2≤b時(shí),X落在區(qū)間()內(nèi)的概率為。指數(shù)分布,0,,其中,則稱隨機(jī)變量X服從參數(shù)為的指數(shù)分布。X的分布函數(shù)為,x<0。記住積分公式:正態(tài)分布設(shè)隨機(jī)變量的密度函數(shù)為,,其中、為常數(shù),則稱隨機(jī)變量服從參數(shù)為、的正態(tài)分布。或高斯(Gauss)分布,記為具有如下性質(zhì):1°的圖形是關(guān)于對(duì)稱的;2°當(dāng)時(shí),,則為最大值;若的分布函數(shù)為。。參數(shù)、時(shí)的正態(tài)分布稱為標(biāo)準(zhǔn)正態(tài)分布,記為,其密度函數(shù)記為,,分布函數(shù)為。是不可求積函數(shù),其函數(shù)值,已編制成表可供查用。Φ(-x)=1-Φ(x)且Φ(0)=。如果~,則~。。(6)分位數(shù)下分位表:上分位表:;。第三章二維隨機(jī)變量及其分布(1)聯(lián)合分離散型布如果二維隨機(jī)向量(X,Y)的所有可能取值為至多可列個(gè)有序?qū)Γ▁,y),則稱為離散型隨機(jī)量。設(shè)=(X,Y)的所有可能取值為,且事件{=}的概率為pij,,稱為=(X,Y)的分布律或稱為X和Y的聯(lián)合分布律。聯(lián)合分布有時(shí)也用下面的概率分布表來表示:YXy1y2………yj………x1x2p11p21p12p22p1jp2jxipi1……這里pij具有下面兩個(gè)性質(zhì):(1)pij≥0(i,j=1,2,…);(2)連續(xù)型對(duì)于二維隨機(jī)向量,如果存在非負(fù)函數(shù),使對(duì)任意一個(gè)其鄰邊分別平行于坐標(biāo)軸的矩形區(qū)域D,即D={(X,Y)|a<x<b,c<y<d}有則稱為連續(xù)型隨機(jī)向量;并稱f(x,y)為=(X,Y)的分布密度或稱為X和Y的聯(lián)合分布密度。分布密度f(x,y)具有下面兩個(gè)性質(zhì):(1)f(x,y)≥0;(2)(2)二維隨機(jī)變量的本質(zhì)(3)聯(lián)合分設(shè)(X,Y)為二維隨機(jī)變量,對(duì)于任意實(shí)數(shù)x,y,二元函數(shù)布函數(shù)稱為二維隨機(jī)向量(X,Y)的分布函數(shù),或稱為隨機(jī)變量X和Y的聯(lián)合分布函數(shù)。分布函數(shù)是一個(gè)以全平面為其定義域,以事件的概率為函數(shù)值的一個(gè)實(shí)值函數(shù)。分布函數(shù)F(x,y)具有以下的基本性質(zhì):(1)(2)F(x,y)分別對(duì)x和y是非減的,即當(dāng)x2>x1時(shí),有F(x2,y)≥F(x1,y);當(dāng)y2>y1時(shí),有F(x,y2)≥F(x,y1);(3)F(x,y)分別對(duì)x和y是右連續(xù)的,即(4)(5)對(duì)于.(4)離散型與連續(xù)型的關(guān)系(5)邊緣分離散型布X的邊緣分布為Y的邊緣分布為;。連續(xù)型X的邊緣分布密度為Y的邊緣分布密度為(6)條件分離散型布在已知X=xi的條件下,Y取值的條件分布為在已知Y=yj的條件下,X取值的條件分布為連續(xù)型在已知Y=y的條件下,X的條件分布密度為;在已知X=x的條件下,Y的條件分布密度為(7)獨(dú)立性一般型F(X,Y)=FX(x)FY(y)離散型有零不獨(dú)立連續(xù)型f(x,y)=fX(x)fY(y)直接判斷,充要條件:①可分離變量②正概率密度區(qū)間為矩形二維正態(tài)分布=0隨機(jī)變量的若X1,X2,…Xm,Xm+1,…Xn相互獨(dú)立,h,g為連續(xù)函數(shù),則:函數(shù)h(X1,X2,…Xm)和g(Xm+1,…Xn)相互獨(dú)立。特例:若X與Y獨(dú)立,則:h(X)和g(Y)獨(dú)立。例如:若X與Y獨(dú)立,則:3X+1和5Y-2獨(dú)立。(8)二維均勻分布設(shè)隨機(jī)向量(X,Y)的分布密度函數(shù)為其中SD為區(qū)域D的面積,則稱(X,Y)服從D上的均勻分布,記為(X,Y)~U(D)。例如圖3.1、圖3.2和圖3.3。y1D1O1x圖3.1y1O2x圖3.2ydcOabx圖3.3(9)二維正設(shè)隨機(jī)向量(X,Y)的分布密度函數(shù)為態(tài)分布其中是5個(gè)參數(shù),則稱(X,Y)服從二維正態(tài)分布,記為(X,Y)~N(由邊緣密度的計(jì)算公式,可以推出二維正態(tài)分布的兩個(gè)邊緣分布仍為正態(tài)分布,即X~N(但是若X~N(,(X,Y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論