專題17 銳角三角函數(shù)-2022年《三步?jīng)_刺中考數(shù)學(xué)》之第1步重課本理考點(原卷版)_第1頁
專題17 銳角三角函數(shù)-2022年《三步?jīng)_刺中考數(shù)學(xué)》之第1步重課本理考點(原卷版)_第2頁
專題17 銳角三角函數(shù)-2022年《三步?jīng)_刺中考數(shù)學(xué)》之第1步重課本理考點(原卷版)_第3頁
專題17 銳角三角函數(shù)-2022年《三步?jīng)_刺中考數(shù)學(xué)》之第1步重課本理考點(原卷版)_第4頁
專題17 銳角三角函數(shù)-2022年《三步?jīng)_刺中考數(shù)學(xué)》之第1步重課本理考點(原卷版)_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題17銳角三角函數(shù)銳角三角函數(shù)是中學(xué)數(shù)學(xué)重要的重難點知識,中考中多以選擇題、填空題、解答題的形式出現(xiàn),主要考查基本概念、基本技能,知識點之間相互轉(zhuǎn)化與穿插,在解幾何體往往是某些數(shù)量關(guān)系的突破口,難度系數(shù)較難。主要體現(xiàn)的思想方法:轉(zhuǎn)化的思想、數(shù)形結(jié)合的思想等。掌握銳角三角函數(shù)的概念及特殊角的三角函數(shù)值.學(xué)會解直角三角形.3.能運(yùn)用三角函數(shù)解決與直角三角形有關(guān)的簡單實際問題.1.直角三角形的邊角關(guān)系(如圖)(1)邊的關(guān)系(勾股定理):AC2+BC2=AB2;(2)角的關(guān)系:∠A+∠B=∠C=900;(3)邊角關(guān)系:①:②:銳角三角函數(shù):∠A的正弦=;∠A的余弦=,∠A的正切=注:三角函數(shù)值是一個比值.2.特殊角的三角函數(shù)值.3.三角函數(shù)的關(guān)系(1)互為余角的三角函數(shù)關(guān)系.sin(90○-A)=cosA,cos(90○-A)=sinAtan(90○-A)=cotAcot(90○-A)=tanA(2)同角的三角函數(shù)關(guān)系.①平方關(guān)系:sin2A+cos2A=l②倒數(shù)關(guān)系:tanA×cotA=1③商數(shù)關(guān)系:4.三角函數(shù)的大小比較(1)同名三角函數(shù)的大小比較①正弦、正切是增函數(shù).三角函數(shù)值隨角的增大而增大,隨角的減小而減?。谟嘞?、余切是減函數(shù).三角函數(shù)值隨角的增大而減小,隨角的減小而增大。(2)異名三角函數(shù)的大小比較①tanA>SinA,由定義,知tanA=,sinA=;因為b<c,所以tanA>sinA②cotA>cosA.由定義,知cosA=,cotA=;因為a<c,所以cotA>cosA.③若0○<A<45○,則cosA>sinA,cotA>tanA;若45○<A<90○,則cosA<sinA,cotA<tanA。5.解直角三角形

在直角三角形中,由已知元素(直角除外)求未知元素的過程,叫做解直角三角形.

在直角三角形中,除直角外,一共有5個元素,即三條邊和兩個銳角.

設(shè)在Rt△ABC中,∠C=90°,∠A、∠B、∠C所對的邊分別為a、b、c,則有:

①三邊之間的關(guān)系:a2+b2=c2(勾股定理).

②銳角之間的關(guān)系:∠A+∠B=90°.

③邊角之間的關(guān)系:

,,,

,,.

④,h為斜邊上的高.

知識要點:

(1)直角三角形中有一個元素為定值(直角為90°),是已知的值.

(2)這里講的直角三角形的邊角關(guān)系指的是等式,沒有包括其他關(guān)系(如不等關(guān)系).

(3)對這些式子的理解和記憶要結(jié)合圖形,可以更加清楚、直觀地理解解直角三角形的常見類型及解法已知條件解法步驟Rt△ABC

邊兩直角邊(a,b)由求∠A,

∠B=90°-∠A,

斜邊,一直角邊(如c,a)由求∠A,

∠B=90°-∠A,

角一直角邊

和一銳角銳角、鄰邊

(如∠A,b)∠B=90°-∠A,

,銳角、對邊

(如∠A,a)∠B=90°-∠A,

,斜邊、銳角(如c,∠A)∠B=90°-∠A,

,知識要點:

1.在遇到解直角三角形的實際問題時,最好是先畫出一個直角三角形的草圖,按題意標(biāo)明哪些元素是已知的,哪些元素是未知的,然后按先確定銳角、再確定它的對邊和鄰邊的順序進(jìn)行計算.

2.若題中無特殊說明,“解直角三角形”即要求出所有的未知元素,已知條件中至少有一個條件為邊.一、單選題1.(2021·云南·中考真題)在中,,若,則的長是()A. B. C.60 D.802.(2021·廣西玉林·中考真題)如圖,底邊上的高為,底邊上的高為,則有()A. B. C. D.以上都有可能3.(2021·廣西桂林·中考真題)如圖,在平面直角坐標(biāo)系內(nèi)有一點P(3,4),連接OP,則OP與x軸正方向所夾銳角α的正弦值是()A. B. C. D.4.(2020·湖北荊門·中考真題)中,,D為的中點,,則的面積為()A. B. C. D.5.(2020·四川涼山·中考真題)如圖所示,的頂點在正方形網(wǎng)格的格點上,則的值為()A. B. C.2 D.6.(2021·山東淄博·中考真題)如圖,在中,是斜邊上的中線,過點作交于點.若的面積為5,則的值為()A. B. C. D.7.(2020·河南·中考真題)如圖,在中,.邊在軸上,頂點的坐標(biāo)分別為和.將正方形沿軸向右平移當(dāng)點落在邊上時,點的坐標(biāo)為()A. B. C. D.8.(2021·廣東深圳·中考真題)在正方形中,,點E是邊的中點,連接,延長至點F,使得,過點F作,分別交、于N、G兩點,連接、、,下列正確的是:①;②;③;④()A.4 B.3 C.2 D.1二、填空題9.(2021·湖北荊門·中考真題)計算:_____.10.(2021·遼寧朝陽·中考真題)已知⊙O的半徑是7,AB是⊙O的弦,且AB的長為7,則弦AB所對的圓周角的度數(shù)為__________.11.(2021·海南·中考真題)如圖,的頂點的坐標(biāo)分別是,且,則頂點A的坐標(biāo)是_____.12.(2021·湖南邵陽·中考真題)如圖,在矩形中,,垂足為點.若,,則的長為______.13.(2021·山東濱州·中考真題)如圖,在中,,,.若點P是內(nèi)一點,則的最小值為____________.14.(2021·江蘇鎮(zhèn)江·中考真題)如圖,等腰三角形ABC中,AB=AC,BC=6,cos∠ABC=,點P在邊AC上運(yùn)動(可與點A,C重合),將線段BP繞點P逆時針旋轉(zhuǎn)120°,得到線段DP,連接BD,則BD長的最大值為__.15.(2021·遼寧丹東·中考真題)已知:到三角形3個頂點距離之和最小的點稱為該三角形的費(fèi)馬點.如果是銳角(或直角)三角形,則其費(fèi)馬點P是三角形內(nèi)一點,且滿足.(例如:等邊三角形的費(fèi)馬點是其三條高的交點).若,P為的費(fèi)馬點,則_________;若,P為的費(fèi)馬點,則_________.三、解答題16.(2021·浙江杭州·中考真題)如圖,在中,的平分線交邊于點,于點.已知,.(1)求證:.(2)若,求的面積17.(2021·廣東·中考真題)如圖,在中,,作的垂直平分線交于點D,延長至點E,使.(1)若,求的周長;(2)若,求的值.18.(2021·北京·中考真題)如圖,在四邊形中,,點在上,,垂足為.(1)求證:四邊形是平行四邊形;(2)若平分,求和的長.19.(2021·湖南永州·中考真題)已知銳角中,角A,B,C的對邊分別為a,b,c,邊角總滿足關(guān)系式:.(1)如圖1,若,求b的值;(2)某公園準(zhǔn)備在園內(nèi)一個銳角三角形水池中建一座小型景觀橋(如圖2所示),若米,米,,求景觀橋的長度.20.(2021·遼寧鞍山·中考真題)如圖,在中,,,過點A作射線AM交射線BC于點D,將AM繞點A逆時針旋轉(zhuǎn)得到AN,過點C作交直線AN于點F,在AM上取點E,使.(1)當(dāng)AM與線段BC相交時,①如圖1,當(dāng)時,線段AE,CE和CF之間的數(shù)量關(guān)系為.②如圖2,當(dāng)時,寫出線段AE,CE和CF之間的數(shù)量關(guān)系,并說明理由.(2)當(dāng),時,若是直角三角形,直接寫出AF的長.21.(2021·遼寧朝陽·中考真題)如圖,在RtABC中,AC=BC,∠ACB=90°,點O在線段AB上(點O不與點A,B重合),且OB=kOA,點M是AC延長線上的一點,作射線OM,將射線OM繞點O逆時針旋轉(zhuǎn)90°,交射線CB于點N.(1)如圖1,當(dāng)k=1時,判斷線段OM與ON的數(shù)量關(guān)系,并說明理由;(2)如圖2,當(dāng)k>1時,判斷線段OM與ON的數(shù)量關(guān)系(用含k的式子表示),并證明;(3)點P在射線BC上,若∠BON=15°,PN=kAM(k≠1),且<,請直接寫出的值(用含k的式子表示).二、解直角三角形的應(yīng)用解直角三角形的知識應(yīng)用很廣泛,關(guān)鍵是把實際問題轉(zhuǎn)化為數(shù)學(xué)模型,善于將某些實際問題中的數(shù)量關(guān)系化歸為直角三角形中的邊角關(guān)系是解決實際應(yīng)用問題的關(guān)鍵.

解這類問題的一般過程是:

(1)弄清題中名詞、術(shù)語的意義,如仰角、俯角、坡度、坡角、方向角等概念,然后根據(jù)題意畫出幾何圖形,建立數(shù)學(xué)模型.

(2)將已知條件轉(zhuǎn)化為幾何圖形中的邊、角或它們之間的關(guān)系,把實際問題轉(zhuǎn)化為解直角三角形的問題.

(3)根據(jù)直角三角形(或通過作垂線構(gòu)造直角三角形)元素(邊、角)之間的關(guān)系解有關(guān)的直角三角形.

(4)得出數(shù)學(xué)問題的答案并檢驗答案是否符合實際意義,得出實際問題的解.

拓展:

在用直角三角形知識解決實際問題時,經(jīng)常會用到以下概念:

(1)坡角:坡面與水平面的夾角叫做坡角,用字母表示.坡度(坡比):坡面的鉛直高度h和水平距離的比叫做坡度,用字母表示,則,如圖,坡度通常寫成=∶的形式.

(2)仰角、俯角:視線與水平線所成的角中,視線中水平線上方的叫做仰角,在水平線下方的叫做俯角,如圖.

(3)方位角:從某點的指北方向線按順時針轉(zhuǎn)到目標(biāo)方向的水平角叫做方位角,如圖①中,目標(biāo)方向PA,PB,PC的方位角分別為是40°,135°,245°.

(4)方向角:指北或指南方向線與目標(biāo)方向線所成的小于90°的水平角,叫做方向角,如圖②中的目標(biāo)方向線OA,OB,OC,OD的方向角分別表示北偏東30°,南偏東45°,南偏西80°,北偏西60°.特別如:東南方向指的是南偏東45°,東北方向指的是北偏東45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.

知識要點:

1.解直角三角形實際是用三角知識,通過數(shù)值計算,去求出圖形中的某些邊的長或角的大小,最好畫出它的示意圖.

2.非直接解直角三角形的問題,要觀察圖形特點,恰當(dāng)引輔助線,使其轉(zhuǎn)化為直角三角形或矩形來解.例如:

3.解直角三角形的應(yīng)用題時,首先弄清題意(關(guān)鍵弄清其中名詞術(shù)語的意義),然后正確畫出示意圖,進(jìn)而根據(jù)條件選擇合適的方法求解.一、單選題1.(2022·山東萊蕪·九年級期末)如圖,某水庫大壩的橫斷面是梯形,壩高,斜坡的坡比為,則斜坡()A.13m B.8m C.18m D.12m2.(2022·江蘇通州·九年級期末)如圖,要測量山高,可以把山坡“化整為零”地劃分為和兩段,每一段上的山坡近似是“直”的.若量得坡長,,測得坡角,,則山高為()A. B.C. D.3.(2021·重慶南開中學(xué)九年級期中)如圖,為測量觀光塔AB的高度,冬冬在坡度i=1:2.4的斜坡CD的D點測得塔頂A的仰角為52°,斜坡CD長為26米,C到塔底B的水平距離為9米.圖中點A,B,C,D在同一平面內(nèi),則觀光塔AB的高度約為()米.(結(jié)果精確到0.1米,參考數(shù)據(jù):sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)A.10.5米 B.16.1米 C.20.7米 D.32.2米4.(2021·重慶市萬州高級中學(xué)九年級期中)四面山是國家5A級風(fēng)景區(qū),里面有一個景點被譽(yù)為亞洲第一巖--土地神巖,土地神巖壁畫高度從石巖F處開始一直豎直到山頂E處,為了測量土地神巖上壁畫的高度,小明從山腳A處,沿坡度i=1:0.75的斜坡上行65米到達(dá)C處,在C處測得山頂E處仰角為26.5°,再往正前方水平走15米到達(dá)D處,在D處測得壁畫底端F處的俯角為42°,壁畫底端F處距離山腳B處的距離是12米,A、B、C、D、E、F在同一平面內(nèi),A、B在同一水平線上,EB⊥AB,根據(jù)小明的測量數(shù)據(jù),則壁畫的高度EF為()米(精確到0.1米,參考數(shù)據(jù):sin26.5°≈0.45,cos26.5°≈0.9,tan26.5°≈0.5,sin42°≈0.67,cos42°≈0.74,tan42°≈0.9)A. B. C. D.5.(2022·遼寧望花·九年級階段練習(xí))如圖,△ABC中,AB=AC=2,∠B=30°,△ABC繞點A逆時針旋轉(zhuǎn)α(0<α<120°)得到△AB'C',B'C'與BC、AC分別交于點D、點E,設(shè)CD+DE=x,△AEC'的面積為y,則y與x的函數(shù)圖象大致為()A.B.C.D.二、解答題6.(2022·山東槐蔭·九年級期末)如圖,小明想測量塔CD的高度.他在A處仰望塔頂,測得仰角為30°,再往塔的方向前進(jìn)50米至B處,測得仰角為60°.(1)求證:AB=BD;(2)求塔高CD.(小明的身高忽略不計,結(jié)果保留根號)7.(2022·山東商河·九年級期末)一種竹制躺椅如圖①所示,其側(cè)面示意圖如圖②③所示,這種躺椅可以通過改變支撐桿CD的位置來調(diào)節(jié)躺椅舒適度,假設(shè)AB所在的直線為地面,已知,當(dāng)把圖②中的支撐桿CD調(diào)節(jié)至圖③中的的位置時,由變?yōu)椋?1)你能求出調(diào)節(jié)后該躺椅的枕部E到地面的高度增加了多少嗎?(參考數(shù)據(jù):,)(2)已知點O為AE的一個三等分點,根據(jù)人體工程學(xué),當(dāng)點O到地面的距離為26cm時,人體感覺最舒適.請你求出此時枕部E到地面的高度.8.(2021·廣東花都·二模)一輛小汽車在某城市道路上自西向東行駛,某“玩轉(zhuǎn)數(shù)學(xué)”活動小組在距路邊20米的點C處放置了“檢測儀器”,測得該車從北偏西60°方向的點A行駛到東北方向的點B,所用時間為6秒.(1)求AB的長;(2)求該車的速度約為多少米/秒?(精確到0.1,參考數(shù)據(jù):≈1.414,≈1.732)9.(2022·廣東·興寧市實驗學(xué)校九年級期末)如圖,某數(shù)學(xué)興趣小組為測量一座古塔的高度,在古塔左側(cè)的A點處測得古塔頂端D的仰角為30°,然后向古塔底端C前進(jìn)30米到達(dá)點B處,測得古塔頂端D的仰角為45°,且點A、B、C在同一水平直線上,求古塔CD的高度.10.(2022·安徽全椒·九年級期末)如圖,一艘快艇A在小島B的西南方向上相距海里處,另-艘快艇C在快艇A的正東方向上,而小島B在快艇C的北偏東32°的方向上,已知快艇A的速度是海里/時,若快艇A、C同時出發(fā)且同時到達(dá)小島B,求快艇C的速度(精確到個位,參考數(shù)據(jù):,,)11.(2022·河南·鄭州市第七十三中學(xué)九年級期末)如圖,一棵大樹在一次強(qiáng)臺風(fēng)中折斷倒下,未折斷樹桿AB與地面仍保持垂直的關(guān)系,而折斷部分AC與未折斷樹桿AB形成53°的夾角.樹桿AB旁有一座與地面垂直的鐵塔DE,測得米,塔高米.在某一時刻的太陽照射下,未折斷樹桿AB落在地面的影子FB長為4米,且點F,B,C,E在同一條直線上,點F,A,D也在同一條直線上.求這棵大樹沒有折斷前的高度.(參考數(shù)據(jù):,,)12

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論