非等原子高熵合金的強(qiáng)韌性:設(shè)計(jì),加工,微觀結(jié)構(gòu)和機(jī)械性能_第1頁(yè)
非等原子高熵合金的強(qiáng)韌性:設(shè)計(jì),加工,微觀結(jié)構(gòu)和機(jī)械性能_第2頁(yè)
非等原子高熵合金的強(qiáng)韌性:設(shè)計(jì),加工,微觀結(jié)構(gòu)和機(jī)械性能_第3頁(yè)
非等原子高熵合金的強(qiáng)韌性:設(shè)計(jì),加工,微觀結(jié)構(gòu)和機(jī)械性能_第4頁(yè)
非等原子高熵合金的強(qiáng)韌性:設(shè)計(jì),加工,微觀結(jié)構(gòu)和機(jī)械性能_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

StrongandDuctileNon-equiatomicHigh-EntropyAlloys:

Design,Processing,Microstructure,andMechanicalPropertiesChangRuobinCONTENTS1.Briefintroductionofhighentropyalloy2.Compositionaldesignofstrongandductilenon-equiatomichigh-entropyalloys3.Processingofstrongandductilebulknon-equiatomichigh-entropyalloys4.Microstructureandmechanicalpropertiesofnon-equiatomichigh-entropyalloys5.SummaryandoutlookBriefintroductiontotheHistoryofEngineeringMaterialsConventionalalloydesignoverthepastcenturieshasbeenconstrainedbytheconceptofoneortwoprevalentbaseelements.Asabreakthroughofthisrestriction,theconceptofhigh-entropyalloys(HEAs)containingmultipleprincipalelementshasdrawngreatattentionoverthelast13yearsduetothenumerousopportunitiesforinvestigationsinthehugeunexploredcompositionalspaceofmulticom-ponentalloys.Murty,Yeh,Ranganathan,Butterworth-Heinemann,2014.Fig.1.BriefintroductiontotheHistoryofEngineeringMaterialsFig.2.(1)Highentropyeffect(2)Schematicdiagramshowingthecompositionalspaceofnon-equiatomichigh-entropyalloys(HEAs),whichissignificantlylargerthanthatofconventionalalloysorequiatomicHEAs.Themoreelementsare,thehighertheentropyvalue.AsillustratedschematicallyinFig.2,comparedwithconventionalalloyswithoneortwoprincipalelementsplusminoralloyingcomponents,aswellasequiatomicHEAswithequimolarratiosofallalloyelements,non-equiatomicHEAsgreatlyexpandthecompositionalspacethatcanbeprobed.Pradeep,etal.MSEA,648(2015)183-192.2.Compositionaldesignofstrongandductilenon-equiatomichigh-entropyalloysFig.3.DifferencesintheGibbsfreeenergiesof(metastable)equiatomic,binaryfccsolidsolutionsandtheirrespectivethermodynamicequilibriumstates.(a)ThebaseCoCrFeMnNialloyat1123and1273K;(b–e)changesduetothesubstitutionof(b)CrwithMoorV,(c)FewithV,(d)CowithTiand(e)NiwithCu.Thusasignificantrelaxationofthephasestabilitytrendsseeninbinarysystemsduetopossibleentropyincreasesresultingfromanincreaseinthenumberofalloyingelementsisnotobservedinhigher-ordersystems.Formationofsingle-phasesolidsolutionsinHEAsshowsweakdependenceonmaximizationoftheconfigurationalentropythroughequiatomicratiosofelements.F.Otto,etal.ActaMaterialia61(2013)2628–2638Fig.4.Theconfigurationalentropy(Sc)ofthenon-equiatomiccompositionalHEAs(FexMn62-xNi30Co6Cr2)asafunctionofx(atomicfractionofFe).ThehorizontaldashedlineistheScoftheHEAattheequiatomiccomposition(Fe20Mn20Ni20Co20Cr20).ScisinkB(Boltzmannconstant)peratom.Thermodynamicinvestigationsofnon-equiatomic

HEAsshowedthattheconfigurationalentropycurveofthesealloysisratherflat,indicatingthatawiderangeofcompositionsalongsidetheequiatomicconfigurationassumesimilarentropyvalues.Thenon-equiatomicHEAconceptprovidespossibilitiesfortheunificationofvariousstrengtheningandtougheningmechanisms,enablingsignificantimprovementofstrain-hardeningcapacityandstrength

ductilitycombinations.D.Ma,etal.ActaMater.98,288(2015).

Athighstrains(>10%truestrain),deformationtwinningisactivatedasanadditionalmechanism,causingatransitioninthestrainhardeningratesimilarasinsomeTWIPsteels.Itwasevenfoundthatmaximumentropyisnotthemostessentialparameterwhendesigningmulticomponentalloyswithsuperiorproperties.Inthiscontext,non-equiatomicHEAswithsingle-structurehaverecentlybeenproposedtoexploretheflexibilityofHEAdesignandovercomethelimitationsoftheoriginalHEAdesignconcept.SinglephaseFCCY.Deng,etal.ActaMaterialia94(2015)124–133Fig.5Compositionaldesignofstrongandductilenon-equiatomichigh-entropyalloys

Thelimitedhardeningmechanismsavailableinsingle-phaseHEAs,i.e.,primarilydislocationinteractionandsolid-solutionstrengthening,restricttheirstrain-hardeningcapacityaswellastheattainablestrength–ductilitycombination.However,thefactthathighductilityofstrongmetallicalloyscanbeobtainedwhendifferentdeformationmechanismsareactivatedsequentiallyduringongoingloading,suchastheadditionalactivationoftwinningandphasetransformationathigherdeformationsknownfromtwinning-inducedplasticity(TWIP)andTRIPsteels.TheTWIPandTRIPphenomenaaremainlydeterminedbythevalueofthestackingfaultenergy,i.e.,theenergycarriedbytheinterruptionofthenormalstackingsequence.TheintrinsicstackingfaultenergyγIofFCC-structuredalloyscanbeexpressedas:Fig.6.Freeenergydifferences(?G)betweentheFCCandHCPstructuresoftypicalalloysystemsat300KderivedbythermodynamiccalculationsusingtheCalphadapproach(Thermo-Calc,databaseTCFE7):(a)quaternaryFe80-xMnxCo10Cr10(x=45at.%,40at.%,35at.%,and30at.%)and(b)quinaryCo20Cr20Fe40-yMn20Niy(y=20at.%,15at.%,10,5at.%,and0at.%).ThisindicatesthattheTRIP-DPeffectintroducedintotheformerquaternaryalloycanalsoberealizedinquinaryalloyswithhighermixingentropyvalue.FreeenergydifferencesbetweentheFCCandHCPstructuresoftwotypicalalloysystemsZHIMINGLI,DIERKRAABE,JOM,Vol.69,No.11,2017Whendesigningthecompositionofstrongandductilenon-equiatomicdual-ormultiphaseHEAs,itisalsoessentialtonotethatthemultipleprincipalelementsselectedshouldbedistributeduniformlyinthemicrostructure,oratleastpartitioninsuchawaythatallofthecoexistingphaseshaveahighsolid-solutioneffectandhighmixingentropy.Furthermore,minorinterstitialelementfractionscanalsobeintroducedintostrongandductilenon-equiatomicdual-ormultiphaseHEAstofurtherimprovetheirmechanicalproperties.Z.Li,etal.Sci.Rep.7,40704(2017).Thus-preparedinterstitialHEA(referredtoasiHEA)wasindeedcharacterizedbyacombinationofvariousstrengtheningmechanismsFig.73.Processingofstrongandductilebulknon-equiatomichigh-entropyalloysFig.8.Processingroutesandrelatedparametersaswellasresultantcompositionalhomogeneitystatesfor3dtransition-metalhigh-entropyalloys.Processingofstrongandductilebulknon-equiatomichigh-entropyalloysThedistributionofthemulti-maincomponentintheblockHEAsisnotuniformbythehomogenizationtreatment.SincehomogenizedHEAsheetsexhibithugegrainsize(>30lm),cold-rollingandannealingprocessesaregenerallyrequiredtorefinethegrainstoachievebettermechanicalproperties.Annealingwasconductedtoobtainfullrecrystallizationofthemicrostructureandtocontrolthegrainsizes.Fig.9.VariationsinFCCgrainsizeandHCPphasefractionindual-phaseFe50Mn30Co10Cr10alloywithincreasingannealingtimeat900°C.Annealingtimeof0minreferstothecold-rolledstateofthesampleswithoutannealing.Interestingly,forthedesignedTRIP-assisteddual-phaseHEAs,annealingtreatmentscanbeusednotonlytocontrolthegrainsize,butalsotomodifythephasefractionsinthemicrostructure.ThevariationsintheFCCgrainsizeandHCPphasefractionofthequaternarydual-phaseZ.Li,etal.ActaMater.131,323(2017).4.Microstructureandmechanicalpropertiesofnon-equiatomichigh-entropyalloysFig.10.TypicalmicrostructuresofFe50Mn30Co10Cr10andFe49.5Mn30Co10Cr10C0.5alloysafterrecrystallizationannealingfor3min:(a1)EBSDphasemapand(a2)ECCimageofdual-phaseFe50Mn30Co10Cr10alloy;(b1)EBSDphasemap,(b2)ECCimage,(b3)APTtipreconstruction,(b4)elementalprofilesacrossaninterfaceofmatrixandcarbide,(b5)TEMbright-fieldimage,and(b6)selected-areadiffractionpatternofinterstitialFe49.5Mn30Co10Cr10C0.5alloy.Diffractionspotsmarkedbyredcirclesin(b6)showtheFCCstructureoftheM23C6carbides(Colorfigureonline).TheslightincreaseofstackingfaultenergyandcorrespondinglyhigherFCCphasestabilitywithadditionofC.ThefractionofHCPephaseintheiHEAissignificantlyreducedafterannealing(Fig.10b1)comparedwiththereferencealloywithoutC(Fig.10a1).Z.Li,etal.ActaMater.131,323(2017).Fig.11.Overviewofultimatetensilestrengthandtotalengineeringelongationobtainedforvariousnon-equiatomichigh-entropyalloys.Forcomparison,dataoftheequiatomicCo20Cr20Fe20Mn20Ni20alloy(#2)arealsoshown.Allalloysproducedin-houseusingsimilarprocessingroutesshowninFig.6forfullcontroloftheexperimentalsetup.Allthesedatastemfromuniaxialtensiletestsconductedonbulksampleswithidenticaldimensionsatroomtemperatureatstrainrateof1x10-3s-1.Withadditionofinterstitialelementcarbonintothedual-phasemicrostructure,thegrain-refinedFe49.5Mn30Co10Cr10C0.5alloy(#8)showsfurtherincreasedultimatestrengthuptonearly1GPawithtotalelongationof~60%.Thesesuperiormechanicalpropertiesareattributedtothejointactivityofvariousstrengtheningmechanismsincludinginter-stitialandsubstitutionalsolidsolution,TWIP,TRIP,nanoprecipitates,dislocationinteractions,stackingfaults,andgrainboundaries.Fig.12.Overviewofdeformationmechanismsinvariousmulticomponenthigh-entropyalloysshowingthattuningdeformationmechanismsiskeytodevelopmentofstrongandductilenon-equiatomichigh-entropyalloys(NE-HEAs).ThestrengthandductilityofthesealloysaregiveninFig.11.SS:solidsolution.Tofurtherclarifythemechanismsresponsiblefortheabovemicrostructure–propertyrelations,Fig.12providesanoverviewofthevariousdeformationmechanismsindifferentmulticomponentHEAspresentedinFig.11.Thisclearlyshowsthattuningdeformationmechanismsviacompositionadjustmentiskeytothedesignofstrongandductilenon-equiatomicHEAs.5.SummaryandoutlookThestrengthandductilityofthevariousnon-equiatomicHEAsatlowandelevatedtemperaturesarestillunknown,andnew(non-equiatomic)HEAswithexcellentstrength–ductilitycombinationsatlowandelevatedtemperaturescanbedesignedandstudied.Forthewidelystudiedtransitio

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論