甘肅省臨洮縣重點達標名校2021-2022學年中考數學模擬預測試卷含解析_第1頁
甘肅省臨洮縣重點達標名校2021-2022學年中考數學模擬預測試卷含解析_第2頁
甘肅省臨洮縣重點達標名校2021-2022學年中考數學模擬預測試卷含解析_第3頁
甘肅省臨洮縣重點達標名校2021-2022學年中考數學模擬預測試卷含解析_第4頁
甘肅省臨洮縣重點達標名校2021-2022學年中考數學模擬預測試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.2.商場將某種商品按原價的8折出售,仍可獲利20元.已知這種商品的進價為140元,那么這種商品的原價是()A.160元B.180元C.200元D.220元3.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(﹣3,﹣4),頂點C在x軸的負半軸上,函數y=(x<0)的圖象經過菱形OABC中心E點,則k的值為()A.6 B.8 C.10 D.124.若二次函數的圖像與軸有兩個交點,則實數的取值范圍是()A. B. C. D.5.兩個相同的瓶子裝滿酒精溶液,在一個瓶子中酒精與水的容積之比是1:p,而在另一個瓶子中是1:q,若把兩瓶溶液混合在一起,混合液中的酒精與水的容積之比是()A. B. C. D.6.若,則括號內的數是A. B. C.2 D.87.某種植基地2016年蔬菜產量為80噸,預計2018年蔬菜產量達到100噸,求蔬菜產量的年平均增長率,設蔬菜產量的年平均增長率為x,則可列方程為()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1008.如圖,直線m∥n,∠1=70°,∠2=30°,則∠A等于(

)A.30° B.35° C.40° D.50°9.如圖是由4個相同的正方體搭成的幾何體,則其俯視圖是()A. B. C. D.10.某城年底已有綠化面積公頃,經過兩年綠化,到年底增加到公頃,設綠化面積平均每年的增長率為,由題意所列方程正確的是().A. B. C. D.11.下列是我國四座城市的地鐵標志圖,其中是中心對稱圖形的是()A. B. C. D.12.tan45°的值等于()A. B. C. D.1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在直角坐標系平面內,拋物線y=3x2+2x在對稱軸的左側部分是_____的(填“上升”或“下降”)14.如圖,⊙O的半徑為5cm,圓心O到AB的距離為3cm,則弦AB長為_____cm.15.如圖是一本折扇,其中平面圖是一個扇形,扇面ABDC的寬度AC是管柄長OA的一半,已知OA=30cm,∠AOB=120°,則扇面ABDC的周長為_____cm16.某次數學測試,某班一個學習小組的六位同學的成績如下:84、75、75、92、86、99,則這六位同學成績的中位數是_____.17.電子跳蚤游戲盤是如圖所示的△ABC,AB=AC=BC=1.如果跳蚤開始時在BC邊的P0處,BP0=2.跳蚤第一步從P0跳到AC邊的P1(第1次落點)處,且CP1=CP0;第二步從P1跳到AB邊的P2(第2次落點)處,且AP2=AP1;第三步從P2跳到BC邊的P3(第3次落點)處,且BP3=BP2;…;跳蚤按照上述規(guī)則一直跳下去,第n次落點為Pn(n為正整數),則點P2016與點P2017之間的距離為_________.18.在矩形ABCD中,AB=4,BC=9,點E是AD邊上一動點,將邊AB沿BE折疊,點A的對應點為A′,若點A′到矩形較長兩對邊的距離之比為1:3,則AE的長為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,經過原點O的拋物線y=ax2+bx(a≠0)與x軸交于另一點A(,0),在第一象限內與直線y=x交于點B(2,t).(1)求這條拋物線的表達式;(2)在第四象限內的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標;(3)如圖2,若點M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點P,使得△POC∽△MOB?若存在,求出點P的坐標;若不存在,請說明理由.20.(6分)如圖所示,AB是⊙O的一條弦,DB切⊙O于點B,過點D作DC⊥OA于點C,DC與AB相交于點E.(1)求證:DB=DE;(2)若∠BDE=70°,求∠AOB的大?。?1.(6分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,DE交AC于點E,且∠A=∠ADE.求證:DE是⊙O的切線;若AD=16,DE=10,求BC的長.22.(8分)如圖,在Rt中,,分別以點A、C為圓心,大于長為半徑畫弧,兩弧相交于點M、N,連結MN,與AC、BC分別交于點D、E,連結AE.(1)求;(直接寫出結果)(2)當AB=3,AC=5時,求的周長.23.(8分)如圖,四邊形ABCD中,E點在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求證:△ABC與△DEC全等.24.(10分)已知關于x的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0有兩個不相等的實數根.求k的取值范圍;寫出一個滿足條件的k的值,并求此時方程的根.25.(10分)某中學開展了“手機伴我健康行”主題活動,他們隨機抽取部分學生進行“使用手機目的”和“每周使用手機的時間”的問卷調查,并繪制成如圖①,②所示的統(tǒng)計圖,已知“查資料”的人數是40人.

請你根據圖中信息解答下列問題:

(1)在扇形統(tǒng)計圖中,“玩游戲”對應的圓心角度數是_____°;

(2)補全條形統(tǒng)計圖;

(3)該校共有學生1200人,試估計每周使用手機時間在2小時以上(不含2小時)的人數.26.(12分)某校為了解學生體質情況,從各年級隨機抽取部分學生進行體能測試,每個學生的測試成績按標準對應為優(yōu)秀、良好、及格、不及格四個等級,統(tǒng)計員在將測試數據繪制成圖表時發(fā)現,優(yōu)秀漏統(tǒng)計4人,良好漏統(tǒng)計6人,于是及時更正,從而形成如圖圖表,請按正確數據解答下列各題:學生體能測試成績各等次人數統(tǒng)計表體能等級調整前人數調整后人數優(yōu)秀8良好16及格12不及格4合計40(1)填寫統(tǒng)計表;(2)根據調整后數據,補全條形統(tǒng)計圖;(3)若該校共有學生1500人,請你估算出該校體能測試等級為“優(yōu)秀”的人數.27.(12分)如圖1,已知△ABC是等腰直角三角形,∠BAC=90°,點D是BC的中點.作正方形DEFG,使點A、C分別在DG和DE上,連接AE,BG.試猜想線段BG和AE的數量關系是_____;將正方形DEFG繞點D逆時針方向旋轉α(0°<α≤360°),①判斷(1)中的結論是否仍然成立?請利用圖2證明你的結論;②若BC=DE=4,當AE取最大值時,求AF的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、不是軸對稱圖形,是中心對稱圖形,故此選項不合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;C、不是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;D、是軸對稱圖形,是中心對稱圖形,故此選項符合題意;故選D.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.2、C【解析】

利用打折是在標價的基礎之上,利潤是在進價的基礎上,進而得出等式求出即可.【詳解】解:設原價為x元,根據題意可得:80%x=140+20,解得:x=1.所以該商品的原價為1元;故選:C.【點睛】此題主要考查了一元一次方程的應用,根據題意列出方程是解決問題的關鍵.3、B【解析】

根據勾股定理得到OA==5,根據菱形的性質得到AB=OA=5,AB∥x軸,求得B(-8,-4),得到E(-4,-2),于是得到結論.【詳解】∵點A的坐標為(﹣3,﹣4),∴OA==5,∵四邊形AOCB是菱形,∴AB=OA=5,AB∥x軸,∴B(﹣8,﹣4),∵點E是菱形AOCB的中心,∴E(﹣4,﹣2),∴k=﹣4×(﹣2)=8,故選B.【點睛】本題考查了反比例函數圖象上點的坐標特征,菱形的性質,勾股定理,正確的識別圖形是解題的關鍵.4、D【解析】

由拋物線與x軸有兩個交點可得出△=b2-4ac>0,進而可得出關于m的一元一次不等式,解之即可得出m的取值范圍.【詳解】∵拋物線y=x2-2x+m與x軸有兩個交點,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故選D.【點睛】本題考查了拋物線與x軸的交點,牢記“當△=b2-4ac>0時,拋物線與x軸有2個交點”是解題的關鍵.5、C【解析】

混合液中的酒精與水的容積之比為兩瓶中的純酒精與兩瓶中的水之比,分別算出純酒精和水的體積即可得答案.【詳解】設瓶子的容積即酒精與水的和是1,則純酒精之和為:1×+1×=+,水之和為:+,∴混合液中的酒精與水的容積之比為:(+)÷(+)=,故選C.【點睛】本題主要考查分式的混合運算,找到相應的等量關系是解決本題的關鍵.6、C【解析】

根據有理數的減法,減去一個數等于加上這個數的相反數,可得答案.【詳解】解:,

故選:C.【點睛】本題考查了有理數的減法,減去一個數等于加上這個數的相反數.7、A【解析】

利用增長后的量=增長前的量×(1+增長率),設平均每次增長的百分率為x,根據“從80噸增加到100噸”,即可得出方程.【詳解】由題意知,蔬菜產量的年平均增長率為x,根據2016年蔬菜產量為80噸,則2017年蔬菜產量為80(1+x)噸,2018年蔬菜產量為80(1+x)(1+x)噸,預計2018年蔬菜產量達到100噸,即:80(1+x)2=100,故選A.【點睛】本題考查了一元二次方程的應用(增長率問題).解題的關鍵在于理清題目的含義,找到2017年和2018年的產量的代數式,根據條件找準等量關系式,列出方程.8、C【解析】試題分析:已知m∥n,根據平行線的性質可得∠3=∠1=70°.又因∠3是△ABD的一個外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案選C.考點:平行線的性質.9、A【解析】試題分析:從上面看是一行3個正方形.故選A考點:三視圖10、B【解析】

先用含有x的式子表示2015年的綠化面積,進而用含有x的式子表示2016年的綠化面積,根據等式關系列方程即可.【詳解】由題意得,綠化面積平均每年的增長率為x,則2015年的綠化面積為300(1+x),2016年的綠化面積為300(1+x)(1+x),經過兩年的增長,綠化面積由300公頃變?yōu)?63公頃.可列出方程:300(1+x)2=363.故選B.【點睛】本題主要考查一元二次方程的應用,找準其中的等式關系式解答此題的關鍵.11、D【解析】

根據中心對稱圖形的定義解答即可.【詳解】選項A不是中心對稱圖形;選項B不是中心對稱圖形;選項C不是中心對稱圖形;選項D是中心對稱圖形.故選D.【點睛】本題考查了中心對稱圖形的定義,熟練運用中心對稱圖形的定義是解決問題的關鍵.12、D【解析】

根據特殊角三角函數值,可得答案.【詳解】解:tan45°=1,故選D.【點睛】本題考查了特殊角三角函數值,熟記特殊角三角函數值是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、下降【解析】

根據拋物線y=3x2+2x圖像性質可得,在對稱軸的左側部分是下降的.【詳解】解:∵在中,,∴拋物線開口向上,∴在對稱軸左側部分y隨x的增大而減小,即圖象是下降的,故答案為下降.【點睛】本題考查二次函數的圖像及性質.根據拋物線開口方向和對稱軸的位置即可得出結論.14、1cm【解析】

首先根據題意畫出圖形,然后連接OA,根據垂徑定理得到OC平分AB,即AC=BC,而在Rt△OAC中,根據勾股數得到AC=4,這樣即可得到AB的長.【詳解】解:如圖,連接OA,則OA=5,OC=3,OC⊥AB,∴AC=BC,∴在Rt△OAC中,AC==4,∴AB=2AC=1.故答案為1.【點睛】本題考查垂徑定理;勾股定理.15、1π+1.【解析】分析:根據題意求出OC,根據弧長公式分別求出AB、CD的弧長,根據扇形周長公式計算.詳解:由題意得,OC=AC=OA=15,的長==20π,的長==10π,∴扇面ABDC的周長=20π+10π+15+15=1π+1(cm),故答案為1π+1.點睛:本題考查的是弧長的計算,掌握弧長公式:是解題的關鍵.16、85【解析】

根據中位數求法,將學生成績從小到大排列,取中間兩數的平均數即可解題.【詳解】解:將六位同學的成績按從小到大進行排列為:75,75,84,86,92,99,中位數為中間兩數84和86的平均數,∴這六位同學成績的中位數是85.【點睛】本題考查了中位數的求法,屬于簡單題,熟悉中位數的概念是解題關鍵.17、3【解析】∵△ABC為等邊三角形,邊長為1,根據跳動規(guī)律可知,

∴P0P1=3,P1P2=2,P2P3=3,P3P4=2,…

觀察規(guī)律:當落點腳標為奇數時,距離為3,當落點腳標為偶數時,距離為2,

∵2017是奇數,

∴點P2016與點P2017之間的距離是3.

故答案為:3.【點睛】考查的是等邊三角形的性質,根據題意求出P0P1,P1P2,P2P3,P3P4的值,找出規(guī)律是解答此題的關鍵.18、或【解析】

由,,得,所以.再以①和②兩種情況分類討論即可得出答案.【詳解】因為翻折,所以,,過作,交AD于F,交BC于G,根據題意,,.若點在矩形ABCD的內部時,如圖則GF=AB=4,由可知.又..又....若則,..則...若則,..則...故答案或.【點睛】本題主要考查了翻折問題和相似三角形判定,靈活運用是關鍵錯因分析:難題,失分原因有3點:(1)不能靈活運用矩形和折疊與動點問題疊的性質;(2)沒有分情況討論,由于點A′A′到矩形較長兩對邊的距離之比為1:3,需要分A′M:A′N=1:3,A′M:A′N=1:3和A′M:A′N=3:1,A′M:A′N=3:1這兩種情況;(3)不能根據相似三角形對應邊成比例求出三角形的邊長.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解析】

(1)由直線解析式可求得B點坐標,由A、B坐標,利用待定系數法可求得拋物線的表達式;(2)過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,可設出C點坐標,利用C點坐標可表示出CD的長,從而可表示出△BOC的面積,由條件可得到關于C點坐標的方程,可求得C點坐標;(3)設MB交y軸于點N,則可證得△ABO≌△NBO,可求得N點坐標,可求得直線BN的解析式,聯(lián)立直線BM與拋物線解析式可求得M點坐標,過M作MG⊥y軸于點G,由B、C的坐標可求得OB和OC的長,由相似三角形的性質可求得的值,當點P在第一象限內時,過P作PH⊥x軸于點H,由條件可證得△MOG∽△POH,由的值,可求得PH和OH,可求得P點坐標;當P點在第三象限時,同理可求得P點坐標.【詳解】(1)∵B(2,t)在直線y=x上,∴t=2,∴B(2,2),把A、B兩點坐標代入拋物線解析式可得:,解得:,∴拋物線解析式為;(2)如圖1,過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,∵點C是拋物線上第四象限的點,∴可設C(t,2t2﹣3t),則E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=CD?OE+CD?BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面積為2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.設MB交y軸于點N,如圖2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中,∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可設直線BN解析式為y=kx+,把B點坐標代入可得2=2k+,解得k=,∴直線BN的解析式為,聯(lián)立直線BN和拋物線解析式可得:,解得:或,∴M(,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=,OC=,∵△POC∽△MOB,∴,∠POC=∠BOM,當點P在第一象限時,如圖3,過M作MG⊥y軸于點G,過P作PH⊥x軸于點H,如圖3∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴∵M(,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);當點P在第三象限時,如圖4,過M作MG⊥y軸于點G,過P作PH⊥y軸于點H,同理可求得PH=MG=,OH=OG=,∴P(﹣,);綜上可知:存在滿足條件的點P,其坐標為(,)或(﹣,).【點睛】本題為二次函數的綜合應用,涉及待定系數法、三角形的面積、二次函數的性質、全等三角形的判定和性質、相似三角形的判定和性質、方程思想及分類討論思想等知識.在(1)中注意待定系數法的應用,在(2)中用C點坐標表示出△BOC的面積是解題的關鍵,在(3)中確定出點P的位置,構造相似三角形是解題的關鍵,注意分兩種情況.20、(1)證明見解析;(2)110°.【解析】分析:(1)欲證明DB=DE,只要證明∠BED=∠ABD即可;(2)因為△OAB是等腰三角形,屬于只要求出∠OBA即可解決問題;詳解:(1)證明:∵DC⊥OA,∴∠OAB+∠CEA=90°,∵BD為切線,∴OB⊥BD,∴∠OBA+∠ABD=90°,∵OA=OB,∴∠OAB=∠OBA,∴∠CEA=∠ABD,∵∠CEA=∠BED,∴∠BED=∠ABD,∴DE=DB.(2)∵DE=DB,∠BDE=70°,∴∠BED=∠ABD=55°,∵BD為切線,∴OB⊥BD,∴∠OBA=35°,∵OA=OB,∴∠OBA=180°-2×35°=110°.點睛:本題考查圓周角定理、切線的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.21、(1)證明見解析;(2)15.【解析】

(1)先連接OD,根據圓周角定理求出∠ADB=90°,根據直角三角形斜邊上中線性質求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根據切線的判定推出即可.

(2)首先證明AC=2DE=20,在Rt△ADC中,DC=12,設BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解決問題.【詳解】(1)證明:連結OD,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE=∠A,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切線;(2)連結CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直徑,∠ACB=90°.∴EC是⊙O的切線.∴DE=EC.∴AE=EC,又∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC=設BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC=.【點睛】考查切線的性質、勾股定理、等腰三角形的判定和性質等知識,解題的關鍵是靈活綜合運用所學知識解決問題.22、(1)∠ADE=90°;(2)△ABE的周長=1.【解析】試題分析:(1)是線段垂直平分線的做法,可得∠ADE=90°(2)根據勾股定理可求得BC=4,由垂直平分線的性質可知AE=CE,所以△ABE的周長為AB+BE+AE=AB+BC=1試題解析:(1)∵由題意可知MN是線段AC的垂直平分線,∴∠ADE=90°;(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,∵MN是線段AC的垂直平分線,∴AE=CE,∴△ABE的周長=AB+(AE+BE)=AB+BC=3+4=1.考點:1、尺規(guī)作圖;2、線段垂直平分線的性質;3、勾股定理;4、三角形的周長23、證明過程見解析【解析】

由∠BAE=∠BCE=∠ACD=90°,可求得∠DCE=∠ACB,且∠B+∠CEA=∠CEA+∠DEC=180°,可求得∠DEC=∠ABC,再結合條件可證明△ABC≌△DEC.【詳解】∵∠BAE=∠BCE=∠ACD=90°,∴∠5+∠4=∠4+∠3,∴∠5=∠3,且∠B+∠CEA=180°,又∠7+∠CEA=180°,∴∠B=∠7,在△ABC和△DEC中,∴△ABC≌△DEC(ASA).24、方程的根【解析】

(1)根據方程的系數結合根的判別式,即可得出關于k的一元一次不等式,解之即可得出k的取值范圍;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.【詳解】(1)∵關于x的一元二次方程x1﹣1(k﹣a)x+k(k+1)=0有兩個不相等的實數根,∴△=[﹣1(k﹣1)]1﹣4k(k﹣1)=﹣16k+4>0,解得:k<.(1)當k=0時,原方程為x1+1x=x(x+1)=0,解得:x1=0,x1=﹣1.∴當k=0時,方程的根為0和﹣1.【點睛】本題考查了根的判別式以及因式分解法解一元二次方程,解題的關鍵是:(1)牢記“當△>0時,方程有兩個不相等的實數根”;(1)取k=0,再利用分解因式法解方程.25、(1)126;(2)作圖見解析(3)768【解析】試題分析:(1)根據扇形統(tǒng)計圖求出所占的百分比,然后乘以360°即可;(2)利用“查資料”人人數是40人,查資料”人占總人數40%,求出總人數100,再求出32人;(3)用部分估計整體.試題解析:(1)126°(2)40÷40%-2-16-18-32=32人(3)1200×=768人考點:統(tǒng)計圖26、(1)12;22;12;4;50;(2)詳

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論