浙江省臺州院附中2022年中考一模數(shù)學(xué)試題含解析_第1頁
浙江省臺州院附中2022年中考一模數(shù)學(xué)試題含解析_第2頁
浙江省臺州院附中2022年中考一模數(shù)學(xué)試題含解析_第3頁
浙江省臺州院附中2022年中考一模數(shù)學(xué)試題含解析_第4頁
浙江省臺州院附中2022年中考一模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022中考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,平行四邊形ABCD的周長為12,∠A=60°,設(shè)邊AB的長為x,四邊形ABCD的面積為y,則下列圖象中,能表示y與x函數(shù)關(guān)系的圖象大致是()A. B. C. D.2.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-23.二次函數(shù)y=a(x﹣m)2﹣n的圖象如圖,則一次函數(shù)y=mx+n的圖象經(jīng)過()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限4.﹣的相反數(shù)是()A.8 B.﹣8 C. D.﹣5.計算3a2-a2的結(jié)果是()A.4a2B.3a2C.2a2D.36.若關(guān)于x的不等式組恰有3個整數(shù)解,則字母a的取值范圍是()A.a(chǎn)≤﹣1 B.﹣2≤a<﹣1 C.a(chǎn)<﹣1 D.﹣2<a≤﹣17.如圖,△ADE繞正方形ABCD的頂點A順時針旋轉(zhuǎn)90°,得△ABF,連接EF交AB于H,有如下五個結(jié)論①AE⊥AF;②EF:AF=:1;③AF2=FH?FE;④∠AFE=∠DAE+∠CFE⑤FB:FC=HB:EC.則正確的結(jié)論有()A.2個 B.3個 C.4個 D.5個8.關(guān)于反比例函數(shù)y=,下列說法中錯誤的是()A.它的圖象是雙曲線B.它的圖象在第一、三象限C.y的值隨x的值增大而減小D.若點(a,b)在它的圖象上,則點(b,a)也在它的圖象上9.如圖,在平面直角坐標(biāo)系中,△ABC與△A1B1C1是以點P為位似中心的位似圖形,且頂點都在格點上,則點P的坐標(biāo)為()A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)10.若是關(guān)于x的方程的一個根,則方程的另一個根是()A.9 B.4 C.4 D.3二、填空題(本大題共6個小題,每小題3分,共18分)11.分解因式:(2a+b)2﹣(a+2b)2=.12.若正多邊形的一個內(nèi)角等于120°,則這個正多邊形的邊數(shù)是_____.13.如圖,把△ABC繞點C按順時針方向旋轉(zhuǎn)35°,得到△A’B’C,A’B’交AC于點D,若∠A’DC=90°,則∠A=°.14.二次根式中的字母a的取值范圍是_____.15.方程x-1=的解為:______.16.按照神舟號飛船環(huán)境控制與生命保障分系統(tǒng)的設(shè)計指標(biāo),“神舟”五號飛船返回艙的溫度為21℃±4℃.該返回艙的最高溫度為________℃.三、解答題(共8題,共72分)17.(8分)如圖,已知點C是以AB為直徑的⊙O上一點,CH⊥AB于點H,過點B作⊙O的切線交直線AC于點D,點E為CH的中點,連接AE并延長交BD于點F,直線CF交AB的延長線于G.(1)求證:AE?FD=AF?EC;(2)求證:FC=FB;(3)若FB=FE=2,求⊙O的半徑r的長.18.(8分)在中,,以為直徑的圓交于,交于.過點的切線交的延長線于.求證:是的切線.19.(8分)對于某一函數(shù)給出如下定義:若存在實數(shù)p,當(dāng)其自變量的值為p時,其函數(shù)值等于p,則稱p為這個函數(shù)的不變值.在函數(shù)存在不變值時,該函數(shù)的最大不變值與最小不變值之差q稱為這個函數(shù)的不變長度.特別地,當(dāng)函數(shù)只有一個不變值時,其不變長度q為零.例如:下圖中的函數(shù)有0,1兩個不變值,其不變長度q等于1.(1)分別判斷函數(shù)y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長度;(2)函數(shù)y=2x2-bx.①若其不變長度為零,求b的值;②若1≤b≤3,求其不變長度q的取值范圍;(3)記函數(shù)y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G2,函數(shù)G的圖象由G1和G2兩部分組成,若其不變長度q滿足0≤q≤3,則m的取值范圍為.20.(8分)我們常用的數(shù)是十進制數(shù),如,數(shù)要用10個數(shù)碼(又叫數(shù)字):0、1、2、3、4、5、6、7、8、9,在電子計算機中用的二進制,只要兩個數(shù)碼:0和1,如二進制中等于十進制的數(shù)6,等于十進制的數(shù)53.那么二進制中的數(shù)101011等于十進制中的哪個數(shù)?21.(8分)如圖,已知在梯形ABCD中,,P是線段BC上一點,以P為圓心,PA為半徑的與射線AD的另一個交點為Q,射線PQ與射線CD相交于點E,設(shè).(1)求證:;(2)如果點Q在線段AD上(與點A、D不重合),設(shè)的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;(3)如果與相似,求BP的長.22.(10分)計算:(﹣1)2018﹣2+|1﹣|+3tan30°.23.(12分)如圖,△ABC中,CD是邊AB上的高,且.求證:△ACD∽△CBD;求∠ACB的大?。?4.解方程:(x﹣3)(x﹣2)﹣4=1.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

過點B作BE⊥AD于E,構(gòu)建直角△ABE,通過解該直角三角形求得BE的長度,然后利用平行四邊形的面積公式列出函數(shù)關(guān)系式,結(jié)合函數(shù)關(guān)系式找到對應(yīng)的圖像.【詳解】如圖,過點B作BE⊥AD于E.∵∠A=60°,設(shè)AB邊的長為x,∴BE=AB?sin60°=x.∵平行四邊形ABCD的周長為12,∴AB=(12-2x)=6-x,∴y=AD?BE=(6-x)×x=﹣(0≤x≤6).則該函數(shù)圖像是一開口向下的拋物線的一部分,觀察選項,C符合題意.故選C.【點睛】本題考查了二次函數(shù)的圖像,根據(jù)題意求出正確的函數(shù)關(guān)系式是解題的關(guān)鍵.2、A【解析】試題分析:原方程變形為:x(x-1)=0x1=0,x1=1.故選A.考點:解一元二次方程-因式分解法.3、A【解析】

由拋物線的頂點坐標(biāo)在第四象限可得出m>0,n>0,再利用一次函數(shù)圖象與系數(shù)的關(guān)系,即可得出一次函數(shù)y=mx+n的圖象經(jīng)過第一、二、三象限.【詳解】解:觀察函數(shù)圖象,可知:m>0,n>0,∴一次函數(shù)y=mx+n的圖象經(jīng)過第一、二、三象限.故選A.【點睛】本題考查了二次函數(shù)的圖象以及一次函數(shù)圖象與系數(shù)的關(guān)系,牢記“k>0,b>0?y=kx+b的圖象在一、二、三象限”是解題的關(guān)鍵.4、C【解析】互為相反數(shù)的兩個數(shù)是指只有符號不同的兩個數(shù),所以的相反數(shù)是,故選C.5、C【解析】【分析】根據(jù)合并同類項法則進行計算即可得.【詳解】3a2-a2=(3-1)a2=2a2,故選C.【點睛】本題考查了合并同類項,熟記合并同類項的法則是解題的關(guān)鍵.合并同類項就是把同類項的系數(shù)相加減,字母和字母的指數(shù)不變.6、B【解析】

根據(jù)“同大取大,同小取小,大小小大取中間,大大小小無解”即可求出字母a的取值范圍.【詳解】解:∵x的不等式組恰有3個整數(shù)解,∴整數(shù)解為1,0,-1,∴-2≤a<-1.故選B.【點睛】本題考查了一元一次不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.7、C【解析】

由旋轉(zhuǎn)性質(zhì)得到△AFB≌△AED,再根據(jù)相似三角對應(yīng)邊的比等于相似比,即可分別求得各選項正確與否.【詳解】解:由題意知,△AFB≌△AED∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.∴AE⊥AF,故此選項①正確;∴∠AFE=∠AEF=∠DAE+∠CFE,故④正確;∵△AEF是等腰直角三角形,有EF:AF=:1,故此選項②正確;∵△AEF與△AHF不相似,∴AF2=FH·FE不正確.故此選項③錯誤,∵HB//EC,∴△FBH∽△FCE,∴FB:FC=HB:EC,故此選項⑤正確.故選:C【點睛】本題主要考查了正方形的性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,熟練地應(yīng)用旋轉(zhuǎn)的性質(zhì)以及相似三角形的性質(zhì)是解決問題的關(guān)鍵.8、C【解析】

根據(jù)反比例函數(shù)y=的圖象上點的坐標(biāo)特征,以及該函數(shù)的圖象的性質(zhì)進行分析、解答.【詳解】A.反比例函數(shù)的圖像是雙曲線,正確;B.k=2>0,圖象位于一、三象限,正確;C.在每一象限內(nèi),y的值隨x的增大而減小,錯誤;D.∵ab=ba,∴若點(a,b)在它的圖像上,則點(b,a)也在它的圖像上,故正確.故選C.【點睛】本題主要考查反比例函數(shù)的性質(zhì).注意:反比例函數(shù)的增減性只指在同一象限內(nèi).9、A【解析】

延長A1A、B1B和C1C,從而得到P點位置,從而可得到P點坐標(biāo).【詳解】如圖,點P的坐標(biāo)為(-4,-3).

故選A.【點睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應(yīng)頂點的連線相交于一點,對應(yīng)邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.10、D【解析】

解:設(shè)方程的另一個根為a,由一元二次方程根與系數(shù)的故選可得,解得a=,故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、3(a+b)(a﹣b).【解析】(2a+b)2﹣(a+2b)2=4a2+4ab+b2-(a2+4ab+4b2)=4a2+4ab+b2-a2-4ab-4b2=3a2-3b2=3(a2-b2)=3(a+b)(a-b)12、6【解析】試題分析:設(shè)所求正n邊形邊數(shù)為n,則120°n=(n﹣2)?180°,解得n=6;考點:多邊形內(nèi)角與外角.13、55.【解析】

試題分析:∵把△ABC繞點C按順時針方向旋轉(zhuǎn)35°,得到△A’B’C∴∠ACA’=35°,∠A=∠A’,.∵∠A’DC=90°,∴∠A’=55°.∴∠A=55°.考點:1.旋轉(zhuǎn)的性質(zhì);2.直角三角形兩銳角的關(guān)系.14、a≥﹣1.【解析】

根據(jù)二次根式的被開方數(shù)為非負數(shù),可以得出關(guān)于a的不等式,繼而求得a的取值范圍.【詳解】由分析可得,a+1≥0,解得:a≥﹣1.【點睛】熟練掌握二次根式被開方數(shù)為非負數(shù)是解答本題的關(guān)鍵.15、【解析】

兩邊平方解答即可.【詳解】原方程可化為:(x-1)2=1-x,

解得:x1=0,x2=1,

經(jīng)檢驗,x=0不是原方程的解,x=1是原方程的解

故答案為.【點睛】此題考查無理方程的解法,關(guān)鍵是把兩邊平方解答,要注意解答后一定要檢驗.16、17℃.【解析】

根據(jù)返回艙的溫度為21℃±4℃,可知最高溫度為21℃+4℃;最低溫度為21℃-4℃.【詳解】解:返回艙的最高溫度為:21+4=25℃;返回艙的最低溫度為:21-4=17℃;故答案為:17℃.【點睛】本題考查正數(shù)和負數(shù)的意義.±4℃指的是比21℃高于4℃或低于4℃.三、解答題(共8題,共72分)17、(1)詳見解析;(2)詳見解析;(3)2.【解析】(1)由BD是⊙O的切線得出∠DBA=90°,推出CH∥BD,證△AEC∽△AFD,得出比例式即可.(2)證△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根據(jù)直角三角形斜邊上中線性質(zhì)得出CF=DF=BF即可.(3)求出EF=FC,求出∠G=∠FAG,推出AF=FG,求出AB=BG,連接OC,BC,求出∠FCB=∠CAB推出CG是⊙O切線,由切割線定理(或△AGC∽△CGB)得出(2+FG)2=BG×AG=2BG2,在Rt△BFG中,由勾股定理得出BG2=FG2﹣BF2,推出FG2﹣4FG﹣12=0,求出FG即可,從而由勾股定理求得AB=BG的長,從而得到⊙O的半徑r.18、證明見解析.【解析】

連接OE,由OB=OD和AB=AC可得,則OF∥AC,可得,由圓周角定理和等量代換可得,由SAS證得,從而得到,即可證得結(jié)論.【詳解】證明:如圖,連接,∵,∴,∵,∴,∴,∴,∴∵∴,則,∴,∴,即,在和中,∵,∴,∴∵是的切線,則,∴,∴,則,∴是的切線.【點睛】本題主要考查了等腰三角形的性質(zhì)、切線的性質(zhì)和判定、圓周角定理和全等三角形的判定與性質(zhì),熟練掌握圓周角定理和全等三角形的判定與性質(zhì)是解題的關(guān)鍵.19、詳見解析.【解析】試題分析:(1)根據(jù)定義分別求解即可求得答案;(1)①首先由函數(shù)y=1x1﹣bx=x,求得x(1x﹣b﹣1)=2,然后由其不變長度為零,求得答案;②由①,利用1≤b≤3,可求得其不變長度q的取值范圍;(3)由記函數(shù)y=x1﹣1x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G1,可得函數(shù)G的圖象關(guān)于x=m對稱,然后根據(jù)定義分別求得函數(shù)的不變值,再分類討論即可求得答案.試題解析:解:(1)∵函數(shù)y=x﹣1,令y=x,則x﹣1=x,無解;∴函數(shù)y=x﹣1沒有不變值;∵y=x-1=,令y=x,則,解得:x=±1,∴函數(shù)的不變值為±1,q=1﹣(﹣1)=1.∵函數(shù)y=x1,令y=x,則x=x1,解得:x1=2,x1=1,∴函數(shù)y=x1的不變值為:2或1,q=1﹣2=1;(1)①函數(shù)y=1x1﹣bx,令y=x,則x=1x1﹣bx,整理得:x(1x﹣b﹣1)=2.∵q=2,∴x=2且1x﹣b﹣1=2,解得:b=﹣1;②由①知:x(1x﹣b﹣1)=2,∴x=2或1x﹣b﹣1=2,解得:x1=2,x1=.∵1≤b≤3,∴1≤x1≤1,∴1﹣2≤q≤1﹣2,∴1≤q≤1;(3)∵記函數(shù)y=x1﹣1x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G1,∴函數(shù)G的圖象關(guān)于x=m對稱,∴G:y=.∵當(dāng)x1﹣1x=x時,x3=2,x4=3;當(dāng)(1m﹣x)1﹣1(1m﹣x)=x時,△=1+8m,當(dāng)△<2,即m<﹣時,q=x4﹣x3=3;當(dāng)△≥2,即m≥﹣時,x5=,x6=.①當(dāng)﹣≤m≤2時,x3=2,x4=3,∴x6<2,∴x4﹣x6>3(不符合題意,舍去);②∵當(dāng)x5=x4時,m=1,當(dāng)x6=x3時,m=3;當(dāng)2<m<1時,x3=2(舍去),x4=3,此時2<x5<x4,x6<2,q=x4﹣x6>3(舍去);當(dāng)1≤m≤3時,x3=2(舍去),x4=3,此時2<x5<x4,x6>2,q=x4﹣x6<3;當(dāng)m>3時,x3=2(舍去),x4=3(舍去),此時x5>3,x6<2,q=x5﹣x6>3(舍去);綜上所述:m的取值范圍為1≤m≤3或m<﹣.點睛:本題屬于二次函數(shù)的綜合題,考查了二次函數(shù)、反比例函數(shù)、一次函數(shù)的性質(zhì)以及函數(shù)的對稱性.注意掌握分類討論思想的應(yīng)用是解答此題的關(guān)鍵.20、1.【解析】分析:利用新定義得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根據(jù)乘方的定義進行計算.詳解:101011=1×25+0×24+1×23+0×22+1×21+1×20=1,所以二進制中的數(shù)101011等于十進制中的1.點睛:本題考查了有理數(shù)的乘方:有理數(shù)乘方的定義:求n個相同因數(shù)積的運算,叫做乘方.21、(1)見解析;(2);(3)當(dāng)或8時,與相似.【解析】

(1)想辦法證明即可解決問題;(2)作A于M,于N.則四邊形AMPN是矩形.想辦法求出AQ、PN的長即可解決問題;(3)因為,所以,又,推出,推出相似時,與相似,分兩種情形討論即可解決問題;【詳解】(1)證

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論