probability distributions什么是概率分布_第1頁
probability distributions什么是概率分布_第2頁
probability distributions什么是概率分布_第3頁
probability distributions什么是概率分布_第4頁
probability distributions什么是概率分布_第5頁
已閱讀5頁,還剩60頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

Probability概率分 LearningObjectives學習目WhatisaProbabilityDistribution什么是概率分布Experiment,SampleSpace, 實驗,樣本空間,事RandomVariable,ProbabilityFunctions(pmf,pdf,cdf) 量,概率函DiscreteDistributions離散分Binomial 二項式分Poisson 泊松分布 超幾何分ContinuousDistributions連續(xù)分Normal 正態(tài)分Uniform 均勻分Exponential 指數(shù)分Logarithmicnormaldistribution對數(shù)正態(tài)分 威布爾分 WhatisaProbability什么是概率分布 rogressfromdescriptionofdatatowardsinferenceofdata,anconceptistheideaofaprobability當我們從描述性數(shù)據(jù)進步到推論性數(shù)據(jù)時,一個重要的內(nèi)容就是概率分布的念Toappreciatethenotionofaprobabilitydistribution,weneedtoreviewfundamentalconceptsrelatedto為了解概率分布的概念,我們需要復習各種基本相關概念Experiment,SampleSpace,實驗,樣本空間,事 量 WhatisaProbability什么是概率分布Anexperimentisanyactivitythatgeneratesasetofdata, aybenumericalor實驗是產(chǎn)生一系列數(shù)據(jù)的行為,數(shù)據(jù)有可能是數(shù)字的或非數(shù)字的

a

{1,2,..,

Experimentgeneratesnumerical/discrete實驗產(chǎn)生計數(shù)性實驗產(chǎn)生計數(shù)性實驗產(chǎn)生數(shù)字/離散數(shù)

Inspectingforstainmarks檢

實驗產(chǎn)生連實驗產(chǎn)生連續(xù)性

Experimentgeneratesattributedata

shaft

10.5310.4910.2210.2911.20

ExperimentgeneratescontinuousdataWhatisaProbability什么是概率分布RandomExperiment隨機實Ifwethrowthediceagainandagain,orproducemanyshaftsfromthesameprocess,theeswillgenerallybedifferent,andcannotbepredictedinadvancewithtotalcertainty.如果我們擲子一次由一次,或從相同工序生產(chǎn)許多軸,結果會是不同的.不能完提前預測Anexperimentwhichcanresultindifferentes,eventhoughitisrepeatedthesamemannereverytime,iscalledarandom一個實驗導致不同的結果,即使它是每次以相同方式,這叫做隨機實 WhatisaProbability什么是概率分布SampleSpace樣本空Thecollectionofallpossible esofanexperimentiscalleditssamplespace.收集實驗的Tossingadice{1,2,3,…Inspectingforstain污點痕跡檢{PassFail}通過,不通{Allvaluesbetween0andmax.possible,say,10mm}所有值在0和最大值,可能的軸徑,例如 e,orasetof es,fromarandomexperimentiscalledanevent,i.e.itisasubsetofthesamplespace.一個結果,或一套結果,從一個隨機實驗出來的稱為事件,也就是樣本空間的子

WhatisaProbability什么是概率分布Example例1:Someeventsfromtossingofadice.從 的一些事件Event事件1: eisanoddnumber結果是奇 E1={1,3,Event事件2: eisanumber>4大于4的結 E2={5,Example2Someeventsfrommeasuringshaft?:從測量軸徑的一些事Eventeisdiametermean直徑大于平均Event事件eis E1={x>partfailingspecs.未通過規(guī)格的結果 E2={x<LSL,x> WhatisaProbability什么是概率分布RandomVariable Fromasameexperiment,differenteventscanbederiveddependingonaspectsoftheexperimentweconsider從一個相同的實驗,由于我們認為重要的實驗方面不同而產(chǎn)生不同的結Inmanycases,itisusefulandconvenienttodefinetheaspectoftheexperimentweareinterestedinbydenotingtheeventofinterestwithasymbol(usuallyanuppercaseletter),e.g.:許多方面,它是很有用和方便的定義我們 的實驗方面,通過一個大寫字母表示.舉例說明LetXbetheevent“thenumberofadiceis用X代表事件 的數(shù)字是奇數(shù)LetWbetheevent“theshaftiswithin用W代表事件”軸徑尺寸在規(guī)格 WhatisaProbability什么是概率分布 Wehavedefinedafunctionthatassignsarealnumbertoanexperimental ewithinthesamplespaceoftherandomexperiment.X=X=Partsoutofspecs.(LSL=8mm,USL=10mm)shaft

0..,7.99998,7.99999,8,9.99999,10,10.00001,10.00002,Thisfunction(XorWinourexamples)iscalledarandomvariable函數(shù)(例子中的X或W)稱為 esofthesameeventareclearlyuncertainandarevariablefrom eto ehasanequalchanceofbeing WhatisaProbability什么是概率分布 fyhowlikelya eofarandomvariablecanoccur,weassignanumericalvaluebetween0and1(or0to為量化一個 量的指定結果發(fā)生的可能性,我們指定一個數(shù)字介于0和1之間(Thisnumericalvalueiscalledtheprobabilityof Thereareafewwaysofinterpretingprobability.Acommonwayistointerpretprobabilityasafraction(orproportion)oftimesthe eoccursinmanyrepetitionsofthesamerandomexperiment.次Thismethodistherelativefrequencyapproachorfrequentistapproachtointerpreting這種方法概率解釋的相對頻率模擬或單位頻率模 WhatisaProbability什么是概率分布ProbabilityDistribution概率分Whenweareabletoassignaprobabilitytoeachpossible eofarandomvariableX,thefulldescriptionofalltheprobabilitiesassociatedwiththe esiscalledaprobabilitydistributionofX.當我們能夠表明一個 量的某一個可能結果的概率,則整個可能結果的概的描述稱為X的概率分Aprobabilitydistributionistypicallypresentedasacurveorplotthat一個概率分布被代表為一個曲線或點應有Allthepossible esofXonthehorizontalaxisTheprobabilityof eonthevertical每一個結果的概率在縱 關于概隨機現(xiàn) 隨機試 樣本點、樣本空

隨機事

事件的運算 對立、并、交、 WhatisaProbability什么是概率分布離散概率分布(理論上UniformUniformContinuousProbabilityDistributions 連續(xù)概率分布(理論上NormalNormal EmpiricalDistributions經(jīng)驗分Createdfromactualobservations.Usuallyrepresentedas根據(jù)實際觀測得來,通常用直方圖代Empiricaldistributions,liketheoreticaldistributions,applytobothdiscretecontinuous經(jīng)驗分布,象理論上的分布,適用于離散和連續(xù)分布 PropertiesofDistributions分布的描Threecommonimportantcharacteristics: definesnatureof形 definescentraltendencyof中 definesdispersionofdata(orDispersion,orScale) 統(tǒng)一分統(tǒng)一分

PropertiesofDistributions分布的描ShapeDescribeshowtheprobabilitiesofallthe esareCanbedescribedmathematicallywithanequationcalledaprobability可以用一個概率函數(shù)數(shù)字表示,舉例說1x

fx

e2

LowercaseletterrepresentsaspecificvalueofrandomvariableX小字母代表

f(x)meansP(X= PropertiesofDistributions分布的描Foradiscretedistribution,對于一個離散分布f(xcalledistheprobabilityf(x稱為概率集中:massfunction(pmf),e.g.:函數(shù),舉例說明=Foracontinuousdistribution,對于 f(x)iscalledtheprobabilityf(x)稱為概率密度densityfunction(pdf),e.g=ft

t

,tPPx xn xpx1 2120000 PropertiesofDistributions分布的描Thetotalprobabilityforanydistributionsumsto任何分布的全部概率總和為Inadiscretedistribution,probabilityisrepresentedasheightofthebar.在一個離散分布,概率用柱狀表

Inacontinuousdistribution,probabilityisrepresentedasareaunderthe(pdf),betweentwo 續(xù)分布,概率曲線下兩點間面積表

Normal PropertiesofDistributions分布的描ProbabilityofAnExactValueUnderPDFisForacontinuousrandomvariable,theprobabilityofanexactvalueoccurringistheoretically‘0’alineonapdfhas‘0’width, P(X=x)=

forarandomInpractice,ifweobtainaparticularvalue,e.g.12.57,ofarandomvariableX,howdoweinterprettheprobabilityof12.57happening? ItisinterpretedastheprobabilityofXassumingavaluewithinasmallintervalaround12.57,[12.565,,Thisisobtainedbyintegratingtheareaunderthepdfbetween12.565and和 PropertiesofDistributions分布的描Areaofalineisf(9.5)=P(X=9.5)=

Togetprobabilityof20.0,integrateareabetween19.995and20.005,i.e.P(19.995<X<Areadenotesprobabilityofgettingavaluebetween40.0and50.0. f(x)isusedtocalculateanthatrepresents注意:f(x)用于計算 概率的面 CumulativeDistributionFunction連續(xù)分布函Insteadofaprobabilitydistributionfunction,itisoftenusefultodescribe,foraspecificvaluexofarandomvariable,thetotalprobabilityofallpossiblevaluesoccurring,upto&includingx,i.e.P(Xx).代表一個概率分布函數(shù),它經(jīng)常用于描述, 量x的一個特定值,所有全可能發(fā)生的概率,包括xi.e.P(XAequationorfunctionthatlinksaspecificxvaluetothecumulatedprobabilitiesofallpossiblevaluesuptoandincludingxiscalledacumulativedistributionfunction(cdf),denotedasF(x).一個等式或函數(shù)相關于特定x值的累計F(x)=P(X

Comparef(x)=P(X= NormalDistribution正態(tài)分Normal ProbabilityDensity1x fx

e2

xCumulativeDistributionxxa

F(x)

PX

x

fxdxx 1x e CumulativeDistributionFunction累計分布函ProbabilityProbabilityMassfx

e

xCumulativeDistributionxxF(x)

PX

x0

fxP(

0)

P(

1)...

P(

Theoreticallyderiveddistributionsusingcertainrandomexperimentsthatfrequentlyariseinapplications.Theoreticallyderiveddistributionsusingcertainrandomexperimentsthatfrequentlyariseinapplications.Usedtoesofsystemsthatbehavesimilarlyrandomexperimentsusedtoderivethedistributions.常用概率分DiscreteDistributions離散分 均勻分 二項式分 幾何分 超幾何分 泊松分Continuous 連續(xù)分 均勻分 正態(tài)分 指數(shù)分 威布爾分Erlang, 對數(shù)正態(tài)分 DiscreteDistributions重要的離散分Binomial Poisson Binomial BinomialDistributionBinomialExperimentAssumingwehaveaprocessthatishistoricallyknowntoproduceprejectpcanbeusedastheprobabilityoffindingafaileduniteachtimewedrawapartfromtheprocessforinspection.

Let’spullasampleofnpartsrandomlyfromalargepopulation(>10n)forinspection.讓我們隨機從一大批量樣本10n)中取出n個樣本Eachpartisclassifiedacceptor

SampleRejectRejectrate=BinomialDistributionBinomialExperimentAssumingwehaveaprocessthatishistoricallypcanbeusedastheoffindingafaileduniteach

Foreachtrial(drawingaunit),theofsuccessis對于每次試驗(取樣本),成概率是一個常wedrawapartfromtheprocessforinspection.P用于當我們從工序每次取出分時,取到不合格品的概率

Trialsareindependent;resultofaunitdoes eofnext試驗是獨立的,一個單位的結果不響下一個結果的輸出Let’spullasampleofnpartsrandomlyfromalargepopulation(>10n)forinspection.讓我們隨機從一大批量樣本10n)中取出n個樣本Eachpartisclassifiedacceptor

Eachtrialresultsinonlytwo 每一次試驗只有兩種可能的結果AAbinomial一個二項式試BinomialDistributionProbabilityMassFunction概率集中函Ifeachbinomialexperiment(pullingnpartsrandomlyforpass/failinspection)isseveraltimes,doweseethesamexdefectiveunitsallthe否可以每次看到相同的X不合格Thepmfthatdescribeshowthexdefectiveunits(calledsuccesses)aredistributedisn

,0Probabilityofgettingxdefectiveunits(xsuccesses)的概率(X合格品

xUsingasamplesizeofunits(n使用n個樣本量(n次

Giventhattheoveralldefectiveis(probabilityofsuccessis給出整個不合格品率(成功的概率是BinomialDistributionApplicationsThebinomialdistributionisextensivelyusedtomodelresultsofexperimentsthatgeneratees,e.g.pass/fail,go/nogo,accept/reject,二項式分布廣泛應用于結果只輸出兩種的實驗.舉例來說,通過/不通過,去/不去,接受 .等等Inindustrialpractice,itisusedfordatageneratedfromcountingofdefectives,在工業(yè)實際中,常用于缺陷品計數(shù)的數(shù)據(jù),Acceptance ProbabilityProbabilityofFindingX

Binomial

x

NumberofRejects BinomialDistributionExample1例Ifaprocesshistoricallygives10%rejectrate(p= 率是10%(p=0.10),whatisthechanceoffinding0,1,2or3defectiveswithinasampleof20units(n=20)?則對于20個樣本中發(fā)現(xiàn)0123缺陷品的概略是多少20

0

for

1

n xx BinomialDistributionExample1cont’d)例1繼Theseprobabilitiescanbeobtainedfrom這些概率可通過Minitab獲得CalcProbabilityDistributionsn=p=結果的指列 BinomialDistributionExample1From FromBinomial

n

Px

xProbabilityofProbabilityofFindingxDefectives

x

Whatistheprobabilityofgetting2defectivesorless?BinomialDistributionExample1cont’d)例1(繼續(xù)Forthe2previouscharts,thex-axisdenotesthenumberofdefectiveunits,對于上頁中的圖表,X軸表明缺陷品單位的數(shù)量Ifwedivideeachxvaluebyconstantsamplesize,n,andre-expressthex-axisasaproportiondefectivep-axis,thedonot 代替X軸為缺陷品率p,則概率不變. BinomialDistribution二項式分ParametersofBinomialDistribution二項式分布的參Thelocation,dispersionandshapeofabinomialdistributionareaffectedbythesamplesize,n,anddefectiverate,p.

分布參 BinomialDistributionNormalApproximationtotheDependingonthevaluesofnandp,thebinomialdistributionsareafamilyofdistributionsthatcanbeskewedtotheleftorright.Undercertainconditions(combinationsofnandp),thebinomialdistribution approachestheshapeofanormal在一定的情況下(n和p一定),二項式分布近似于一個正態(tài)分布的形狀ForForp np>Forpfarfrom0.5(smalleror np> 2ppp1pnnnp1pBinomialDistributionMeanandVariance均值和方Althoughnandppindownaspecificbinomialdistribution,oftenthemeanvarianceofthedistributionareusedinpracticalapplicationssuchasthep-盡管n和p給定了一個特定的二項式分布,但分布的均值和方差經(jīng)常被實際的分布,象p-Themeanandvarianceofabinomial二項式分布的均值和方 DiscreteDistributions重要的離散分Binomial Poisson PoissonDistributionThisdistributionhavebeenfoundtoberelevantforapplicationsinvolvingerrorrates,particlecount,chemicalconcentration,etc,此分布被發(fā)現(xiàn)應用于錯誤率,灰塵數(shù),化學比,等等Px

e

xwhereisthemeannumberofevents(ordefectrate)withingivenunitoftimeor是給定的一個單位或空間中事件或缺陷率的平均數(shù)量And

SimeonD 2PoissonDistributionnumber esinatimeinterval(orspaceregion)isindependentof esinanotherinterval(orspaceprobabilityofanoccurrencewithi yshorttimeinterval(orspaceregion)isproportionaltothetimeinterval(orspaceregion)probabilityofmorethan1 eoccurringwithinashorttimeinterval(orspaceregion)isthemeanandvarianceforaPoissonDistribution PoissonDistributionThelocation,dispersionandshapeofaPoissondistributionisaffectedbythe泊松分布的位置,離散和形狀都受均影 Example2練習Acertainprocessyieldsadefectrateof4Foraopportunitiesinspected,determinetheprobability某一工序產(chǎn)生的缺陷率是4dpmo試計算其概 ExampleCalcProbabilityDistributionsa)ProbabilityMass b)CumulativeDistribution SummaryofApproximations近似總np>ifpnp>

p<

thesmallerthe&thelargerthetheif|p|

15Thelargerthe ContinuousDistributionsNormalExponential Normal正態(tài)分Normal NormalDistribution正態(tài)分Themostwidelyusedmodelforthedistributionofcontinuousrandom Arisesinthestudyofnumerousnaturalphysicalphenomena,suchasthevelocitymolecules,aswellasinoneofthemostimportantfindings,theCentralLimit來自于大量自然物理現(xiàn)象的研究,例如分子的電壓 NormalDistribution正態(tài)分Manynaturalphenomenaandman-madeprocessesareobservedtohavedistributions,orcanbecloselyrepresentedasnormally我們觀測到許多自然現(xiàn)象和人為工序都符合正態(tài)分布,或近似于正態(tài)分布Forexample,thelengthofamachinedpartisobservedtovaryaboutitsmeandue例如:機器元件的長度均值的變化由于temperaturedrift,humiditychange,vibrations,cuttinganglevariations,cuttingtoolwear,bearingwear,rotationalspeedvariations,fixturingvariations,rawmaterialchangesandcontaminationlevelchanges溫度漂移,濕度變化,振動,切削角度變化,切削工具磨損,軸承磨損,轉速變化,Ifthesesourcesofvariationaresmall,independentandequallylikelytobepositiveornegativeaboutthemeanvalue,thelengthwillcloselyapproximateanormaldistribution. NormalDistribution正態(tài)分Normal ProbabilityDensity概率密度函1x fx

e2

xCumulativeDistributionx累計分布函x

F(x)

PX

x

fxdx 1x x x

e2

SomePropertiesoftheNormal 正態(tài)分布的一些Anormaldistributioncanbe ydescribedbyknowingonly一個正態(tài)分布完全可以描述由已知Mean)均Variance()方

X~N(,

分布ParametersofParametersofthe分布

Whatisthedifferencebetweenthe3normal三個正態(tài)分布有何不同SomePropertiesoftheNormal正態(tài)分布的一些

,

Whatisthe betweenprocessA&foreachA,B分布的區(qū)別 SomePropertiesoftheNormal正態(tài)分布的一些Themean,medianandmodeallcoincideatthesamevalue.Thereis均值,中位數(shù)和重數(shù)一致為相同值完全對μ--

Doesitmeanthatanydatasetwhichhasmean,medianandmodeatthesamevaluewillautomaticallybeanormaldistribution?+SomePropertiesoftheNormal正態(tài)分布的一些Theareaundersectionsofthecurvecanbeusedtoestimatetheprobabilityofacertain“event”occurring:部分曲線下的面積可用于計算一定事件發(fā)生的概-

Pointof

+/-3isoftenreferredtoasthewidthofanormal+SomePropertiesoftheNormal正態(tài)分布的一些Let’scomputethecumulativeprobabilitiesofthefollowing讓我們計算下列分布的累計概

==

==-

P(X>20.0)P(X>20.0)=1–F(1.8)=P(XF(1.8)=P(X<

+

=-=P(-2.8P(-2.8<X<0.5)=

- - +SomePropertiesoftheNormal正態(tài)分布的一些CalcProbabilityDistributions

x ZxSomePropertiesZx正態(tài)分布的一些Anormal

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論