![2022-2023學(xué)年福建省泉州市晉江錦東華僑中學(xué)高一數(shù)學(xué)理下學(xué)期期末試題含解析_第1頁](http://file4.renrendoc.com/view/9e9439946d944b664e62754c1a475dd7/9e9439946d944b664e62754c1a475dd71.gif)
![2022-2023學(xué)年福建省泉州市晉江錦東華僑中學(xué)高一數(shù)學(xué)理下學(xué)期期末試題含解析_第2頁](http://file4.renrendoc.com/view/9e9439946d944b664e62754c1a475dd7/9e9439946d944b664e62754c1a475dd72.gif)
![2022-2023學(xué)年福建省泉州市晉江錦東華僑中學(xué)高一數(shù)學(xué)理下學(xué)期期末試題含解析_第3頁](http://file4.renrendoc.com/view/9e9439946d944b664e62754c1a475dd7/9e9439946d944b664e62754c1a475dd73.gif)
![2022-2023學(xué)年福建省泉州市晉江錦東華僑中學(xué)高一數(shù)學(xué)理下學(xué)期期末試題含解析_第4頁](http://file4.renrendoc.com/view/9e9439946d944b664e62754c1a475dd7/9e9439946d944b664e62754c1a475dd74.gif)
![2022-2023學(xué)年福建省泉州市晉江錦東華僑中學(xué)高一數(shù)學(xué)理下學(xué)期期末試題含解析_第5頁](http://file4.renrendoc.com/view/9e9439946d944b664e62754c1a475dd7/9e9439946d944b664e62754c1a475dd75.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年福建省泉州市晉江錦東華僑中學(xué)高一數(shù)學(xué)理下學(xué)期期末試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.已知集合則=(
)A.
B.
C.
D.參考答案:D略2.在長方體ABCD-A1B1C1D1中,,,則AB1與平面ABC1D1所成角的正弦值為(
)A. B. C. D.參考答案:B【分析】做出線面角,在直角三角形中解角的正弦值.【詳解】做于H點,連接AH,因為,,又因為,,根據(jù)線面角的定義得到為所求角,在中,由等面積法得到,線面角的正弦值為:故答案:B.【點睛】這個題目考查了空間中的直線和平面的位置關(guān)系,線面角的求法。求線面角,一是可以利用等體積計算出直線的端點到面的距離,除以線段長度就是線面角的正弦值;還可以建系,用空間向量的方法求直線的方向向量和面的法向量,再求線面角即可。3.若函數(shù)為定義域D上的單調(diào)函數(shù),且存在區(qū)間[a,b]D(其中a<b),使得當x∈[a,b]時,的取值范圍恰為[a,b],則稱函數(shù)是D上的正函數(shù).若函數(shù)是(-∞,0)上的正函數(shù),則實數(shù)的取值范圍為(
)A.
B.
C.
D.參考答案:C因為函數(shù)是上的正函數(shù),所以,
所以當時,函數(shù)單調(diào)遞減,則,
即,
兩式相減得,即,
代入得,
由,且,,
即解得-故關(guān)于的方程在區(qū)間內(nèi)有實數(shù)解,
記
則,即且解得且即
4.正方形AP1P2P3的邊長為4,點B,C分別是邊P1P2,P2P3的中點,沿AB,BC,CA折成一個三棱錐P-ABC(使P1,P2,P3重合于P),則三棱錐P-ABC的外接球表面積為
(
)A.24π
B.12π
C.8π
D.4π參考答案:C略5.已知的周長為,面積為,則其圓心角為A.
B.
C.
D.參考答案:A6.函數(shù)的圖像(
)A.關(guān)于原點對稱
B.關(guān)于點(-,0)對稱C.關(guān)于y軸對稱
D.關(guān)于直線x=對稱參考答案:B7.若向量=(1,2),=(-2,3)分別表示向量與,則|+|=()A.
B.25
C.2
D.26參考答案:A8.下列四個命題中正確的是(
)
①若一個平面內(nèi)的兩條直線與另一個平面都平行,那么這兩個平面相互平行;②若一個平面經(jīng)過另一個平面的垂線,那么這兩個平面相互垂直;③垂直于同一直線的兩條直線相互平行;
④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.A.①和②
B.②和③
C.③和④
D.②和④參考答案:D略9.函數(shù)y=lncosx()的圖象是()A. B. C. D.參考答案:A【考點】35:函數(shù)的圖象與圖象變化.【分析】利用函數(shù)的奇偶性可排除一些選項,利用函數(shù)的有界性可排除一些個選項.從而得以解決.【解答】解:∵cos(﹣x)=cosx,∴是偶函數(shù),可排除B、D,由cosx≤1?lncosx≤0排除C,故選A.10.若向量=﹣2,||=4,||=1,則向量,的夾角為() A. B. C. D.參考答案:A【考點】平面向量數(shù)量積的運算. 【專題】平面向量及應(yīng)用. 【分析】根據(jù)平面向量的數(shù)量積公式求向量的夾角. 【解答】解:由已知向量=﹣2,||=4,||=1,則向量,的夾角的余弦值為:,由向量的夾角范圍是[0,π], 所以向量,的夾角為; 故選:A. 【點評】本題考查了利用平面向量的數(shù)量積公式求向量的夾角;熟記公式是關(guān)鍵.二、填空題:本大題共7小題,每小題4分,共28分11.15題
“愛我河南、愛我家鄉(xiāng)”攝影比賽,9位評委為參賽作品A給出的分數(shù)如圖所示。記分員在去掉一個最高分和一個最低分后,算得平均分為91.復(fù)核員在復(fù)核時,發(fā)現(xiàn)有一個數(shù)字(莖葉圖中的x)無法看清。若記分員計算無誤,則數(shù)字x應(yīng)該是
。
參考答案:1略12.若f(x)是冪函數(shù),且滿足=2,則f()=.參考答案:【考點】冪函數(shù)的概念、解析式、定義域、值域.【分析】由待定系數(shù)法求得冪函數(shù)解析式,從而求出f()【解答】解:設(shè)f(x)=xα,由==3α=2,得α=log32,∴f(x)=xlog32,∴f()=()log32=.故答案為:.【點評】本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意冪函數(shù)的性質(zhì)的合理運用.13.已知:直線,不論為何實數(shù),直線恒過一定點,則點M的坐標__________.參考答案:(-1,-2)略14.已知扇形的半徑為2,面積為,則扇形的圓心角的弧度數(shù)為
;參考答案:
15.如果一個水平放置的圖形的斜二測直觀圖是一個底面為,腰和上底均為的等腰梯形,那么原平面圖形的面積是
▲
.參考答案:16.在△ABC中,∠C=90°,M是BC的中點.若sin∠BAM=,則sin∠BAC=________.參考答案:17.若,則的值為
.參考答案:三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(本小題12分)求過兩直線和的交點,且分別滿足下列條件的直線l的方程(1)直線l與直線平行;(2)直線l與直線垂直.參考答案:略19.四棱錐P-ABCD中,底面ABCD是的菱形,側(cè)面PAD為正三角形,其所在平面垂直于底面ABCD.(1)若G為線段AD的中點,求證:AD⊥平面PBG;(2)若E為邊BC的中點,能否在棱PC上找到一點F,使平面DEF⊥平面ABCD?并證明你的結(jié)論.參考答案:(1)如圖,取中點,連接,,,∵為等邊三角形,∴,在中,,,∴為等邊三角形,∴,∴平面.(2)連接與相交于點,在中,作,交于點,∵平面平面,∴平面,∴平面,∴平面平面,易知四邊形為平行四邊形,∴是的中點,∴是的中點,∴在上存在一點,即為的中點,使得平面平面.20.為了綠化城市,準備在如圖所示的區(qū)域ABCDE內(nèi)修建一個矩形PQRD的草坪,其中∠AED=∠EDC=∠DCB=90°,點Q在AB上,且PQ∥CD,QR⊥CD,經(jīng)測量BC=70m,CD=80m,DE=100m,AE=60m問應(yīng)如何設(shè)計才能使草坪的占地面積最大?并求出最大面積(精確到1m2).參考答案:【考點】函數(shù)模型的選擇與應(yīng)用.【分析】如圖,先以BC邊所在直線為x軸,,以AE邊所在直線為y軸建立平面直角坐標系,求得直線AB的方程,再設(shè)出Q坐標,由矩形面積公式建立模型,然后根據(jù)函數(shù)的類型選擇適當?shù)姆椒ㄇ笃渥钪担窘獯稹拷猓喝鐖D,以BC邊所在直線為x軸,,以AE邊所在直線為y軸建立平面直角坐標系,則A(0,20),B(30,0).所以直線AB的方程為:+=1,即設(shè),則矩形PQRD的面積為(0≤x≤30)化簡,得(0≤x≤30)配方,(0≤x≤30)易得當x=5,y=時,S最大,其最大值為Smax≈6017m221.已知函數(shù)=.(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;(2)求在區(qū)間上的最大值和最小值.參考答案:(1)===………………2分所以函數(shù)的周期………………3分單調(diào)遞增區(qū)間是…………
5分(2)
因為,所以,所以………6分所以,
當,即時,
……8
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 代理權(quán)贈與合同范例
- 電力安全與應(yīng)急練習(xí)試題附答案
- 東莞房東合租合同范本
- 出售整體大棚合同范例
- 兼職美術(shù)教師合同范本
- 農(nóng)家老宅出租合同范本
- 各類風(fēng)機零件行業(yè)深度研究報告
- 代播協(xié)議合同范本
- 2019-2025年中國醫(yī)學(xué)影像診斷設(shè)備市場供需格局及未來發(fā)展趨勢報告
- 2025年度健身中心場地租賃合作協(xié)議書
- 水利水電工程建設(shè)常見事故類型及典型事故分析(標準版)
- 《小學(xué)英語教學(xué)設(shè)計》課件全套 陳冬花 第1-10章 小學(xué)英語教學(xué)設(shè)計概述-小學(xué)英語課堂管理
- 政府采購項目采購需求調(diào)查指引文本
- 2024建筑用輻射致冷涂料
- 2024年浙江省公務(wù)員錄用考試《行測》題(A類)
- 《化工設(shè)備機械基礎(chǔ)(第8版)》完整全套教學(xué)課件
- 2024年江西省中考英語試題含解析
- 初級消防設(shè)施操作員實操題庫 (一)
- GB/T 23473-2024林業(yè)植物及其產(chǎn)品調(diào)運檢疫規(guī)程
- 公務(wù)員2012年國考《申論》真題卷及答案(地市級)
- 跨學(xué)科實踐活動2 制作模型并展示科學(xué)家探索物質(zhì)組成與結(jié)構(gòu)的歷程(分層作業(yè))-九年級化學(xué)上冊同步高效課堂(人教版2024)(解析版)
評論
0/150
提交評論