版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
FrameworkSS3R9
Correlation
and
regressionR10
Multiple
regression
and
issues
in
regression
ysisR11
Time-series
ysisR12
Excerpt
from
“Probabilistic
Approaches:
Scenarioysis,
Decision
Trees,
and
Simulation”2-23R9Correlation
and
regression3-23Correlation
ysisSignificance
test(Hypothesis
test)計(jì)算H0
:
0;t
test
RejectH0
RejectH0α/2
95%
α/2t
r
n
2
,df
n
21
r2
-t
critical
+t
critical結(jié)論:例如reject
the
null
hypothesis
->the
correlationcoefficient
between
X
and
Y
is
significantly
different
from
zero.Limitation①Outliers(異常值):few
extreme
values②
Spurious
correlation:no
economic
explanation③
Nonlinear
relationships:Correlation
onlymeasures
the
linear
relationship4-23Simple
Linear
Regression建模ANOVA
Table分析檢驗(yàn)?zāi)P徒
i
b0
b1Xi
i,i
1,,
nYj
=
dependent
variable,explained
variable,predicted
variableXj
=independent
variable,explanatory
variable,predictingvariableAssumption①
A
linear
relationship
exists
between
X
and
Y②
X
is
uncorrelated
with
the
error
term.i.e.,
E(
)
0③
The
expected
value
of
the
error
term
is
zeroi④The
variance
of
the
error
term
is
constant
(homoskedastic)⑤The
error
term
is
uncorrelated
across
observations(E(εiεj)=O
for
all
i≠j)⑥The
error
term
is
normally
distributed.CoefficientEstimation解釋:An
estimated
slope
coefficient
of
2:Y
will
change
two
units
for
every1
unitchange
in
X.Intercept
term
of
2%:the
X
iszero,Y
is
2%.計(jì)算b1
Cov(
X
,Y
)Var(
X
)b0
Y
b1
X5-23ANOVATable分析dfSSMSSRegressionk=1RSSMSR=RSS/kErrorn-k-1SSEMSE=SSE(n-k-1)Totaln-1SST-CoefficientDetermination(R2)解釋:R2of
0.90
indicates
that
the
variation
of
the
independent
variableexplains
90%of
the
variation
in
the
dependent
variable.SEE計(jì)算:性質(zhì):The
SEE
gauges
the
"fit"
of
the
regression
line.
The
smaller
thestandard
error,the
betler
the
fit.The
SEE
is
the
standard
deviation
of
the
error
terms
in
the
regression.結(jié)
論計(jì)算:R2
SSR
1
SSESST
SSTYY?R2
r
2XY(多元都成立)>一元:R2
r
2SSE6-23
MSESEE
n
k
1Simple
Linear
Regression模型檢驗(yàn):回歸分析相當(dāng)于抽樣估計(jì)考試時(shí)給定條件CoefficientStandard
deviationt-statisticp-valueInterceptb?0S
?b0?0.18Slopeb?1S
?b1?<0.001參數(shù)估計(jì)(confidenceinterval)b?
t
s
t
:查表
t分布1
c
b?
c1
Confidence
level
(置信度)As
SEE
rises,
Sb?
a|so
incmses1假設(shè)檢驗(yàn)(significancelevel)H0:b1=0(沒(méi)有特殊說(shuō)明,題目中假設(shè)檢驗(yàn)都是檢驗(yàn)是否為0)t
b?
b
b
1 1
?S
0
df=n-2b?0Decision
rule:
reject
HO
if
+t
critical<t,
or
t
<
t
criticalRejection
of
the
null
means
that
the
slope
coefficient
isdifferent
from
zeroSimple
Linear
Regression7-23(Predicted
Value
of
Y)Point
estimateY?
b?
b?
Xo
1Confidence
interval
estimateY?
(tc
s
f
)了解Simple
Linear
Regression模型
:只要求掌握抽樣估計(jì)8-23R10Multiple
regression
and
issues
in
regression
ysis9-23Difference
compared
with
unit
regressionInterpreting
thecoefficientEach
slope
coefficient
is
the
estimated
change
in
Y
for
a
one
unit
change
inXj,holding
the
other
independent
varbia?
jbles
constant.單個(gè)檢驗(yàn)
H
:
b
0
t
df
n
k1Significancetest(t-test):
0
jSb?j聯(lián)合檢驗(yàn)(F-test):The
test
assesses
the
effectiveness
of
the
model
as
awhole
in
explaining
the
dependent
variableH0:b1=b2=b3=...=bk=0Ha:
atleast
one
b≠j0(j=1
to
k) F
MSR
SSR
/
k
reject
H0:
if
F(test-statistic)>Fc(critical
value)
MSE
SSE
/(n
k
1)The
F-test
hereis
always
a
one-tailed
testR2解釋:R2
of
0.90
indicates
that
the
model,
as
a
whole,explains
90%of
thevariation
in
the
dependent
variable.缺點(diǎn):R2
almost
always
increases
as
variable
are
added
to
the
model,
even
if
themarginal
contribution
of
the
new
variables
is
not
statistically
significant.adjusted
R2
1
1
R2
adjusted
R2
1
n
1
n
k
1SSE/n
k
1
SST/n
1R2r2YY?R2
r2XYHereoskedasticityImpactUnconditional:
no
major
problemsConditional:significant
problemsNot
affect
the
consistency
of
parameter
estimatorsCoefficient
estimates
are
not
affectedStandard
errors
are
usually
unrelliable
estimatestoo
small Type
?
errortoo
large Type
∥
errorDctectionBreush-Pagen
2
testHo:
No
hereoskedasticityBP=n×Rr
2,
df=k,
one-tailed
testesidualCorrectionrobust,
or
White-corrected
standard
eroorsgeneralized
least
squaresMultiple
Regression
Assumption
Violations11-23Multiple
Regression
Assumption
ViolationsSerial
correlation(autocorrelation)ImpactSerial
correlation
is
often
found
in
time
series
dataNot
affect
the
consistency
of
estimated
regression
coefficients
and
coefficientestimatesPositive
serial
correlation
is
much
common:
Positive
serial
correlation→
coefficient
standard
errors
that
are
too
small
→Type
?
error
&
F-test
unreliableDetectionDurbin-Watson
test
(看下圖)→Ho:No
serial
correlation,
DW≈2×(1-r)Reject
H0,
Not
reject
HInconclusive
RejectH0,positive
serial
Inconclusive
0
positive
serialcorrelation
correlation0
d1
du
2
4-du
4-d1
4Correctionadjusting
the
coefficient
standard
errors(e.g.,Hansen
method):
the
Hansenmethod
also
corrects
for
conditional
heteroskedaticity
.incorporate
thetime-seriesnature12-23Multiple
Regression
Assumption
ViolationsMulticollinearityImpactCoefficient
estimates
are
imprecise
and
unreliable;
not
affectconsistency;
inflate
standard
error->
type
∥
errorDetection①t-test都丌通過(guò),即單個(gè)檢驗(yàn)的b=0;F-test顯著;R2
is
high。以上同時(shí)出現(xiàn),一定有Multicollinearity。②
?rx1x2?>0.7CorrectionRemove
one
or
more
independent
variables13-23Dummy
variablesModelMisspecification模型Qualitative
variable:
0
and
1n
categories->n-1
dummy
variables例:EPSt
=b0
+b1Q1t
+b2Q2t
+b3Q3t
+εtEPSt
=
a
quarterly
observation
of
earnings
pershareQ1t
=1
if
period
t
is
the
ftrst
quarter,Q1t
=0
otherwiseQ2t
=1
if
periodt
is
thesecond
quarter,Q2t
=0
otherwiseQ3t
=1
ifperiodt
is
the
third
quarter,Q3t
=0otherwiseInterpreting
thecoefficientsb0:
average
value
of
EPS
for
the
fourth
quarterSlope
coefficient:
difference
in
EPS(o age)
between
therespective
quarter
(i.e.,quarter
1,2,or
3)and
the
omitled
quarter.比如,b1=EPS1-EPS4①
The
functional
form
can
be
misspecified.Important
variables
are
omitled.Variables
should
be
transformed.Data
is
improperly
pooled.②Time
series
misspecification
.A
lagged
Y
is
used
as
an
X
with
serially
correlated
errors.A
function
ofthe
Y
is
used
as
an
X
(forecastingthe
past).Independent
variables
are
measured
with
error.③Time-series
data:
nonstationarity.14-23R11Time-Series
ysis15-23Trend
Models每期增長(zhǎng)量是constant
amount每期的增長(zhǎng)率是constant
rateLinear
trendLog-linear
trend
model用DWtest檢驗(yàn)ε
是否有serialcorrelationNo使用trend
modelYesARModel以AR(1)開始模型的估計(jì)AR(P)
xt
b0
b1xt1
b2
xt2...
bp
xt
p
tChain
rule
of
forecastingx?t
1
b?
b?x
計(jì)算0
1
tAssumption(具體看后面)No
autocorrelationNo
Conditional
HeteroskedasticityCovariance-stationary
series檢驗(yàn)是否有Seasonality(類似autocorrelation)xt
b0
b1xt1
b2
xt
4
tCompareforecasting
powersmallest
RMSE
forout-of-sample
一〉最好RMSE計(jì)算Yt
b0
b1Xt
tXt,Yt
都是time
series
dataRegression
with
More
Than
One
Time
Series具體看后面16-23AR
Model
assumption1、No
autocorrelation:針對(duì)residual
termDetectionH0
:
,0No
autocorrelationt
tkt
statistics
,
t
tk1/n
standard
error=1/
nRejectH0:
t>
+
t
critical,or
t
<
-
t
criticalCorrectionReject
Ho:(add
lagged
values)AR(1)
→AR(2)考試時(shí)給的表格17-231-0.15380.0528-2.914220.10970.05282.078230.06570.05281.244240.09200.05281.7434Autocorrelations
of
tte
ResidualLag
Autocorrelation
StandardErrort-Statistic2、No
Conditional
Heteroskedasticity:針對(duì)residual
term(用ARCH)含義Heteroskedasticity
refers
to
the
situation
that
the
variance
of
the
errorterm
is
notconstantDetectionTest
Conditional
Heteroskedasticity
=
Test
whether
a
time
series
is
ARCH(1)
2
a
a
2
ut
0 1
t
1
ta1
is
significantly
different
from
0一>Conditional
Heteroskedasticity
existCorrectionGeneralized
least
squares含義3、Covariance-stationary
series:針對(duì)Xtxt
b0
b1xt1
tCovariance-stationaryMean
reversionMean-reverting
:x
>mean->x
+1<xt
txt<mean->xt+1>xt
b
01
b1t相反Simplerandomwalk:
Xt
=Xt-1+εtRandom
walkwith
a
drift:①Constant
and
finite
expected
value
of
thetimeseries②Constant
and
finite
variance
of
the
timeseries③Constant
and
finite
covariance
withleading
or
lagged
valuesRandom
walk b1=1(undefinedmean)unit
root
nonstationary檢驗(yàn)修正Define
yt
as
yt=xt-xt-1->
AR(1)
model
yt=bo+b1yt-1+utThe
unit
root
test
of
nonstationarity:
Dickey-Fuller
test(DF
test)xt
b0
b1
xt
1
xt
1
t
xt
b0
gxt
1
t
(
g
b1
1)H0:g=0
(has
a
unit
root
and
is
nonstationary);Ha:g<0Reject
H0->the
time
series
does
not
have
a
unit
root
and
is
stationarydifferencingxt
b0
b1xt
1
t
(b0
0)18-23Regression
with
More
Than
One
Time
SeriesScenarios是否可做多元回歸None
of
the
timeseries
has
a
unit
rootAt
least
onetime
series
has
a
unit
root
while
at
least
one
timeseriesdoes
not×Each
time
series
has
a
unit
root:whetherthe
time
series
are
cointegrated
?conintegrated×nocointegrationTest
the
cointegration:Dickey-Fuller
Engle-Granger
test
(DF-EG
test)Ho:
no
cointegration Ha:cointegrationIf
we
can
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年高端機(jī)床樣品交易協(xié)議版B版
- 2023-2024學(xué)年福建省福州市超德中學(xué)高一(下)期中語(yǔ)文試卷
- 2024年度公務(wù)員勞動(dòng)合同范本社保福利全面保障3篇
- 2024年設(shè)備分期購(gòu)置與節(jié)能改造技術(shù)服務(wù)合同3篇
- 2025版鋼琴教師培訓(xùn)及認(rèn)證服務(wù)合同示范文本3篇
- 2024年行政單位合同業(yè)務(wù)流程創(chuàng)新與執(zhí)行標(biāo)準(zhǔn)協(xié)議3篇
- 2023年LNG工藝包及裝置項(xiàng)目建設(shè)方案
- 2025版家政鐘點(diǎn)工服務(wù)合同-含雇主隱私保護(hù)承諾3篇
- 物流行業(yè)前臺(tái)工作總結(jié)
- 皮膚科護(hù)士的工作點(diǎn)滴
- 芳療與中醫(yī)課件
- 醫(yī)院護(hù)工培訓(xùn)-教學(xué)課件
- 考研考博-英語(yǔ)-中國(guó)礦業(yè)大學(xué)(北京)考試押題卷含答案詳解
- 欄桿百葉安裝施工方案
- 低壓配電電源質(zhì)量測(cè)試記錄
- 安徽省水利工程質(zhì)量檢測(cè)和建筑材料試驗(yàn)服務(wù)收費(fèi)標(biāo)準(zhǔn)
- 2022課程標(biāo)準(zhǔn)解讀及學(xué)習(xí)心得:大單元教學(xué)的實(shí)踐與思考
- OA協(xié)同辦公系統(tǒng)運(yùn)行管理規(guī)定
- 某小區(qū)建筑節(jié)能保溫工程監(jiān)理實(shí)施細(xì)則
- 污水處理中常用的專業(yè)術(shù)語(yǔ)
- 外市電引入工程實(shí)施管理要求(重要)
評(píng)論
0/150
提交評(píng)論