版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.2.已知數(shù)列是公比為的等比數(shù)列,且,,成等差數(shù)列,則公比的值為(
)A. B. C.或 D.或3.設(shè)數(shù)列是等差數(shù)列,,.則這個數(shù)列的前7項和等于()A.12 B.21 C.24 D.364.已知函數(shù)若關(guān)于的方程有六個不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.5.若不等式對恒成立,則實數(shù)的取值范圍是()A. B. C. D.6.雙曲線的漸近線方程為()A. B. C. D.7.已知雙曲線的左、右焦點分別為,圓與雙曲線在第一象限內(nèi)的交點為M,若.則該雙曲線的離心率為A.2 B.3 C. D.8.?dāng)?shù)列{an},滿足對任意的n∈N+,均有an+an+1+an+2為定值.若a7=2,a9=3,a98=4,則數(shù)列{an}的前100項的和S100=()A.132 B.299 C.68 D.999.已知向量,且,則m=()A.?8 B.?6C.6 D.810.的展開式中的常數(shù)項為()A.-60 B.240 C.-80 D.18011.已知集合,則集合真子集的個數(shù)為()A.3 B.4 C.7 D.812.劉徽是我國魏晉時期偉大的數(shù)學(xué)家,他在《九章算術(shù)》中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補,各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機取一個點,此點取自朱方的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的極大值為________.14.已知三棱錐中,,,,且二面角的大小為,則三棱錐外接球的表面積為__________.15.函數(shù)在上的最小值和最大值分別是_____________.16.春節(jié)期間新型冠狀病毒肺炎疫情在湖北爆發(fā),為了打贏疫情防控阻擊戰(zhàn),我省某醫(yī)院選派2名醫(yī)生,6名護士到湖北、兩地參加疫情防控工作,每地一名醫(yī)生,3名護士,其中甲乙兩名護士不到同一地,共有__________種選派方法.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知動圓Q經(jīng)過定點,且與定直線相切(其中a為常數(shù),且).記動圓圓心Q的軌跡為曲線C.(1)求C的方程,并說明C是什么曲線?(2)設(shè)點P的坐標為,過點P作曲線C的切線,切點為A,若過點P的直線m與曲線C交于M,N兩點,則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.18.(12分)已知橢圓的離心率為,且以原點O為圓心,橢圓C的長半軸長為半徑的圓與直線相切.(1)求橢圓的標準方程;(2)已知動直線l過右焦點F,且與橢圓C交于A、B兩點,已知Q點坐標為,求的值.19.(12分)已知函數(shù)(),不等式的解集為.(1)求的值;(2)若,,,且,求的最大值.20.(12分)已知橢圓的焦距為,斜率為的直線與橢圓交于兩點,若線段的中點為,且直線的斜率為.(1)求橢圓的方程;(2)若過左焦點斜率為的直線與橢圓交于點為橢圓上一點,且滿足,問:是否為定值?若是,求出此定值,若不是,說明理由.21.(12分)已知橢圓的中心在坐標原點,其短半軸長為,一個焦點坐標為,點在橢圓上,點在直線上的點,且.證明:直線與圓相切;求面積的最小值.22.(10分)在中,角的對邊分別為,且滿足.(Ⅰ)求角的大?。唬á颍┤舻拿娣e為,,求和的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
判斷出已知條件中雙曲線的漸近線方程,求得四個選項中雙曲線的漸近線方程,由此確定選項.【詳解】兩條漸近線的夾角轉(zhuǎn)化為雙曲漸近線與軸的夾角時要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項漸近線為,B選項漸近線為,C選項漸近線為,D選項漸近線為.所以雙曲線的方程不可能為.故選:C【點睛】本小題主要考查雙曲線的漸近線方程,屬于基礎(chǔ)題.2、D【解析】
由成等差數(shù)列得,利用等比數(shù)列的通項公式展開即可得到公比q的方程.【詳解】由題意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故選:D.【點睛】本題考查等差等比數(shù)列的綜合,利用等差數(shù)列的性質(zhì)建立方程求q是解題的關(guān)鍵,對于等比數(shù)列的通項公式也要熟練.3、B【解析】
根據(jù)等差數(shù)列的性質(zhì)可得,由等差數(shù)列求和公式可得結(jié)果.【詳解】因為數(shù)列是等差數(shù)列,,所以,即,又,所以,,故故選:B【點睛】本題主要考查了等差數(shù)列的通項公式,性質(zhì),等差數(shù)列的和,屬于中檔題.4、B【解析】
令,則,由圖象分析可知在上有兩個不同的根,再利用一元二次方程根的分布即可解決.【詳解】令,則,如圖與頂多只有3個不同交點,要使關(guān)于的方程有六個不相等的實數(shù)根,則有兩個不同的根,設(shè)由根的分布可知,,解得.故選:B.【點睛】本題考查復(fù)合方程根的個數(shù)問題,涉及到一元二次方程根的分布,考查學(xué)生轉(zhuǎn)化與化歸和數(shù)形結(jié)合的思想,是一道中檔題.5、B【解析】
轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,求函數(shù)最值,即得解.【詳解】由,可知.設(shè),則,所以函數(shù)在上單調(diào)遞增,所以.所以.故的取值范圍是.故選:B【點睛】本題考查了導(dǎo)數(shù)在恒成立問題中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.6、C【解析】
根據(jù)雙曲線的標準方程,即可寫出漸近線方程.【詳解】雙曲線,雙曲線的漸近線方程為,故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于容易題.7、D【解析】
本題首先可以通過題意畫出圖像并過點作垂線交于點,然后通過圓與雙曲線的相關(guān)性質(zhì)判斷出三角形的形狀并求出高的長度,的長度即點縱坐標,然后將點縱坐標帶入圓的方程即可得出點坐標,最后將點坐標帶入雙曲線方程即可得出結(jié)果?!驹斀狻扛鶕?jù)題意可畫出以上圖像,過點作垂線并交于點,因為,在雙曲線上,所以根據(jù)雙曲線性質(zhì)可知,,即,,因為圓的半徑為,是圓的半徑,所以,因為,,,,所以,三角形是直角三角形,因為,所以,,即點縱坐標為,將點縱坐標帶入圓的方程中可得,解得,,將點坐標帶入雙曲線中可得,化簡得,,,,故選D?!军c睛】本題考查了圓錐曲線的相關(guān)性質(zhì),主要考察了圓與雙曲線的相關(guān)性質(zhì),考查了圓與雙曲線的綜合應(yīng)用,考查了數(shù)形結(jié)合思想,體現(xiàn)了綜合性,提高了學(xué)生的邏輯思維能力,是難題。8、B【解析】
由為定值,可得,則是以3為周期的數(shù)列,求出,即求.【詳解】對任意的,均有為定值,,故,是以3為周期的數(shù)列,故,.故選:.【點睛】本題考查周期數(shù)列求和,屬于中檔題.9、D【解析】
由已知向量的坐標求出的坐標,再由向量垂直的坐標運算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點睛】本題考查平面向量的坐標運算,考查向量垂直的坐標運算,屬于基礎(chǔ)題.10、D【解析】
求的展開式中的常數(shù)項,可轉(zhuǎn)化為求展開式中的常數(shù)項和項,再求和即可得出答案.【詳解】由題意,中常數(shù)項為,中項為,所以的展開式中的常數(shù)項為:.故選:D【點睛】本題主要考查二項式定理的應(yīng)用和二項式展開式的通項公式,考查學(xué)生計算能力,屬于基礎(chǔ)題.11、C【解析】
解出集合,再由含有個元素的集合,其真子集的個數(shù)為個可得答案.【詳解】解:由,得所以集合的真子集個數(shù)為個.故選:C【點睛】此題考查利用集合子集個數(shù)判斷集合元素個數(shù)的應(yīng)用,含有個元素的集合,其真子集的個數(shù)為個,屬于基礎(chǔ)題.12、C【解析】
首先明確這是一個幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因為正方形為朱方,其面積為9,五邊形的面積為,所以此點取自朱方的概率為.故選:C【點睛】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對函數(shù)求導(dǎo),根據(jù)函數(shù)單調(diào)性,即可容易求得函數(shù)的極大值.【詳解】依題意,得.所以當(dāng)時,;當(dāng)時,.所以當(dāng)時,函數(shù)有極大值.故答案為:.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),考查運算求解能力以及化歸轉(zhuǎn)化思想,屬基礎(chǔ)題.14、【解析】
設(shè)的中心為T,AB的中點為N,AC中點為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點為球心O,將的長度求出或用球半徑表示,再利用余弦定理即可建立方程解得半徑.【詳解】設(shè)的中心為T,AB的中點為N,AC中點為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點為球心O,如圖所示因為,,所以,,,又二面角的大小為,則,,所以,設(shè)外接球半徑為R,則,,在中,由余弦定理,得,即,解得,故三棱錐外接球的表面積.故答案為:.【點睛】本題考查三棱錐外接球的表面積問題,解決此類問題一定要數(shù)形結(jié)合,建立關(guān)于球的半徑的方程,本題計算量較大,是一道難題.15、【解析】
求導(dǎo),研究函數(shù)單調(diào)性,分析,即得解【詳解】由題意得,,令,解得,令,解得.在上遞減,在遞增.,而,故在區(qū)間上的最小值和最大值分別是.故答案為:【點睛】本題考查了導(dǎo)數(shù)在函數(shù)最值的求解中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題16、24【解析】
先求出每地一名醫(yī)生,3名護士的選派方法的種數(shù),再減去甲乙兩名護士到同一地的種數(shù)即可.【詳解】解:每地一名醫(yī)生,3名護士的選派方法的種數(shù)有,若甲乙兩名護士到同一地的種數(shù)有,則甲乙兩名護士不到同一地的種數(shù)有.故答案為:.【點睛】本題考查利用間接法求排列組合問題,正難則反,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),拋物線;(2)存在,.【解析】
(1)設(shè),易得,化簡即得;(2)利用導(dǎo)數(shù)幾何意義可得,要使,只需.聯(lián)立直線m與拋物線方程,利用根與系數(shù)的關(guān)系即可解決.【詳解】(1)設(shè),由題意,得,化簡得,所以動圓圓心Q的軌跡方程為,它是以F為焦點,以直線l為準線的拋物線.(2)不妨設(shè).因為,所以,從而直線PA的斜率為,解得,即,又,所以軸.要使,只需.設(shè)直線m的方程為,代入并整理,得.首先,,解得或.其次,設(shè),,則,..故存在直線m,使得,此時直線m的斜率的取值范圍為.【點睛】本題考查直線與拋物線位置關(guān)系的應(yīng)用,涉及拋物線中的存在性問題,考查學(xué)生的計算能力,是一道中檔題.18、(1);(2).【解析】
(1)根據(jù)橢圓的離心率為,得到,根據(jù)直線與圓的位置關(guān)系,得到原心到直線的距離等于半徑,得到,從而求得,進而求得橢圓的方程;(2)分直線的斜率存在是否為0與不存在三種情況討論,寫出直線的方程,與橢圓方程聯(lián)立,利用韋達定理,向量的數(shù)量積,結(jié)合已知條件求得結(jié)果.【詳解】(1)由離心率為,可得,,且以原點O為圓心,橢圓C的長半軸長為半徑的圓的方程為,因與直線相切,則有,即,,,故而橢圓方程為.(2)①當(dāng)直線l的斜率不存在時,,,由于;②當(dāng)直線l的斜率為0時,,,則;③當(dāng)直線l的斜率不為0時,設(shè)直線l的方程為,,,由及,得,有,∴,,,,∴,綜上所述:.【點睛】該題考查直線與圓錐曲線的綜合問題,橢圓的標準方程,考查直線與橢圓的位置關(guān)系,求向量數(shù)量積,在解題的過程中,注意對直線方程的分類討論,屬于中檔題目.19、(1)(2)32【解析】
利用絕對值不等式的解法求出不等式的解集,得到關(guān)于的方程,求出的值即可;由知可得,,利用三個正數(shù)的基本不等式,構(gòu)造和是定值即可求出的最大值.【詳解】(1)∵,,所以不等式的解集為,即為不等式的解集為,∴的解集為,即不等式的解集為,化簡可得,不等式的解集為,所以,即.(2)∵,∴.又∵,,,∴,當(dāng)且僅當(dāng),等號成立,即,,時,等號成立,∴的最大值為32.【點睛】本題主要考查含有兩個絕對值不等式的解法和三個正數(shù)的基本不等式的靈活運用;其中利用構(gòu)造出和為定值即為定值是求解本題的關(guān)鍵;基本不等式取最值的條件:一正二定三相等是本題的易錯點;屬于中檔題.20、(1).(2)為定值.過程見解析.【解析】分析:(1)焦距說明,用點差法可得=.這樣可解得,得橢圓方程;(2)若,這種特殊情形可直接求得,在時,直線方程為,設(shè),把直線方程代入橢圓方程,后可得,然后由紡長公式計算出弦長,同時直線方程為,代入橢圓方程可得點坐標,從而計算出,最后計算即可.詳解:(1)由題意可知,設(shè),代入橢圓可得:,兩式相減并整理可得,,即.又因為,,代入上式可得,.又,所以,故橢圓的方程為.(2)由題意可知,,當(dāng)為長軸時,為短半軸,此時;否則,可設(shè)直線的方程為,聯(lián)立,消可得,,則有:,所以設(shè)直線方程為,聯(lián)立,根據(jù)對稱性,不妨得,所以.故,綜上所述,為定值.點睛:設(shè)直線與橢圓相
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課改培訓(xùn)心得體會
- 安全保衛(wèi)人員工作總結(jié)
- DB45T 2621-2022 道路旅游客運專用標識
- 設(shè)備管理年度工作總結(jié)
- DB45T 2464-2022 施氏獺蛤養(yǎng)殖技術(shù)規(guī)范
- 基于“組分含量、仿生技術(shù)、感官”多維評價的藍莓復(fù)合發(fā)酵飲工藝優(yōu)化研究
- 英語教師教學(xué)工作總結(jié)大全
- 2024年砌筑項目人力資源承包協(xié)議樣本版B版
- 2025檔案合同借出記錄表
- 大學(xué)生學(xué)習(xí)計劃參考
- 礦井提升機課件.
- 巧借“注釋”-解古典詩歌鑒賞題
- (完整word版)外研社小學(xué)英語單詞表(一年級起1-12全冊)
- 汽車4S店6S管理
- 統(tǒng)編版高中語文必修一《故都的秋》《荷塘月色》比較閱讀-課件
- 醫(yī)療集團組織架構(gòu)
- 電光調(diào)制實驗報告
- 收款憑證(自制Word打印版)
- 鑄鐵閘門檢驗標準
- 某公司項目部質(zhì)量管理體系及制度
- 關(guān)于開展全員營銷活動的實施方案
評論
0/150
提交評論