通信系統(tǒng)課件:第九章 信息論基礎_第1頁
通信系統(tǒng)課件:第九章 信息論基礎_第2頁
通信系統(tǒng)課件:第九章 信息論基礎_第3頁
通信系統(tǒng)課件:第九章 信息論基礎_第4頁
通信系統(tǒng)課件:第九章 信息論基礎_第5頁
已閱讀5頁,還剩124頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

Chapter9FundamentalLimitsinInformationTheoryProblems:(pp.618-625)9.39.5

9.109.11

6

9.311Chapter9FundamentalLimitsinInformationTheory9.1Introduction9.2Uncertainty,Information,andEntropy9.3Source-CodingTheorem9.4DataCompaction9.5DiscreteMemorylessChannels9.6MutualInformation9.7ChannelCapacity9.8Channel-CodingTheorem9.9DifferentialEntropyandMutualInformationforContinuousEnsembles2Chapter9FundamentalLimitsinInformationTheory9.10InformationCapacityTheorem9.11ImplicationsoftheInformationCapacityTheorem9.12InformationCapacityofColoredNoiseChannel9.13RateDistortionTheory9.14DataCompression9.15SummaryandDiscussion3第九章信息論基礎9.1引言9.2不確定性、信息和熵9.3信源編碼定理9.4無失真數(shù)據(jù)壓縮9.5離散無記憶信道9.6互信息9.7信道容量9.8信道編碼定理9.9連續(xù)信號的相對熵和互信息9.10信息容量定理9.11信息容量定理的含義9.12有色噪聲信道的信息容量9.13率失真定理9.14數(shù)據(jù)壓縮9.15總結(jié)與討論4Chapter9FundamentalLimitsinInformationTheoryMainTopics:

Entropy-basicmeasureofinformationSourcecodinganddatacompactionMutualinformation-channelcapacityChannelcoding

InformationcapacitytheoremRate-distortiontheory-sourcecoding59.1Introduction

Purposeofacommunicationsystem

carryinformation-bearingbasebandsignalsfromoneplacetoanotheroveracommunicationchannelRequirementsofacommunicationsystemEfficient:sourcecodingReliable:error-controlcoding69.1Introduction

Questions:1.Whatistheirreduciblecomplexitybelowwhichasignalcannotbecompressed?2.Whatistheultimatetransmissionrateforreliablecommunicationoveranoisychannel?So,invokeinformationtheory(Shannon1948) ↓

mathematicalmodelingandanalysis ofcommunicationsystems79.1Introduction

Answers:1.Entropyofasource2.CapacityofachannelAremarkableresult:If(theentropyofthesource)<(the capacityofthechannel)Thenerror-freecommunicationoverthe channelcanbeachieved.89.2Uncertainty,Information,andEntropyUncertaintyDiscretememorylesssource:->adiscreterandomvariable,S(statisticallyindependent)

(9.1)(9.2)(9.3)99.2Uncertainty,Information,andEntropyeventbeforeoccur,amountofuncertaintyoccur,amountofsurpriseafter,informationgain (resolutionofuncertainty)and:probability↑,surprise↓,information↓e.g.:

nosurprise,noinformation,information()>information()So,theamountofinformationisrelatedtotheinverseoftheprobabilityofoccurrence.109.2Uncertainty,Information,andEntropyAmountofinformationProperties:

Forbase2--unitcalledbit

(9.4)119.2Uncertainty,Information,andEntropyEntropy--meanofI(sk)

Itisameasureoftheaverageinformationcontentpersourcesymbol.Definition:(9.9)129.2Uncertainty,Information,andEntropySomePropertiesofEntropy

BoundaryLowerbound:ifandonlyif forsomek--nouncertaintyUpperbound:ifandonlyif

forallk(可用拉式乘子法證明)(9.10)139.2Uncertainty,Information,andEntropyProve:1.Lowerbound149.2Uncertainty,Information,andEntropy2.upperboundSuppose

(Figure9.1)15Figure9.1

Graphsofthefunctionsx

1andlogxversusx.169.2Uncertainty,Information,andEntropyExample9.1

EntropyofBinaryMemorylessSourceEntropyofthesourceEntropyfunction(Figure9.2)H17Figure9.2

EntropyfunctionH(p0).189.2Uncertainty,Information,andEntropyDistinctionbetweenEqu.(9.15)andEqu.(9.16)

TheofEquation(9.15)givestheentropyofadiscretememorylesssourcewithsourcealphabet. TheentropyfunctionEquation(9.16)isafunctionofthepriorprobabilityp0definedontheinterval[0,1].199.2Uncertainty,Information,andEntropyExtensionofadiscretememorylesssourceExtendedsource:Block--consistingofnsuccessivesourcesymbolssourcealphabetdistinctblocks∵discretememorylesssource→statisticallyindependent∴entropy(9.17)209.2Uncertainty,Information,andEntropyExample9.2Entropyofextendedsource

alphabet probabilitiesentropyofthesource entropyoftheextendedsource219.3Source-CodingTheoremWhy? EfficientNeed: Knowledgeofthestatisticsofthesource3.Example :

Variable-lengthcode

Shortcodewords–frequentsourcesymbols Longcodewords–raresourcesymbols4.Requirementsofanefficientsourceencoder:Thecodewordsareinbinaryform.Thesourcecodeisuniquelydecodable.5.Figure9.3showsasourceencodingscheme.22Figure9.3

Sourceencoding.ablockof0sand1s239.3Source-CodingTheoremAssume:

alphabet--Kdifferentsymbolsprobabilityofkthsymbolsk

--pk,

k=0,1,...,K-1

binarycodewordlengthassignedtosymbolsk

--

lkAveragecode-wordlength--averagenumberofbitspersourcesymbolCodingefficiency(9.18)(9.19)Note:efficientwhen

--Minimumpossiblevalueof

249.3Source-CodingTheoremHowistheminimumvaluedetermined?Answer:Shannon’sfirsttheorem--thesource-codingtheorem

Givenadiscretememorylesssourceofentropy,theaveragecode-wordlengthforanydistor-

tionlesssourceencodingschemeisboundedasBACKBackwhen

(9.21)(9.20)259.4DataCompactionWhydatacompaction?

Signalsgeneratedbyphysicalsourcescontaina significantamountofredundantinformation.→notefficient

Requirementofdatacompaction:

Notonlyefficientintermsoftheaveragenumberofbitspersymbolbutalsoexactinthesensethattheoriginaldatacanbereconstructedwithnolossofinformation.--losslessdatacompressionExamplesPrefixCoding,HuffmanCoding,Lempel-ZivCoding269.4.1PrefixCodingDiscretememorylesssource

alphabetstatisticsrequirement

uniquelydecodable

definition:acodeinwhichnocodewordistheprefixofanyothercodeword.codewordof

--Wheremki∈(0,1);n--code-wordlength

calledprefix279.4.1PrefixCodingTable9.2

CodeIandCodeIIInotaprefixcodeCodeIIaprefixcodedecodingusedecisiontree--Figure9.4

Procedure:

1.Startattheinitialstate.2.Checkthereceivedbit.If=1,decodermovestoaseconddecisionpoint,andrepeatstep2.If=0,movestotheterminalstate,andbacktostep1.28Figure9.4

DecisiontreeforcodeIIofTable9.2.e.g.:1011111000…→s1s3s2s0s0

…299.4.1PrefixCodingProperty:

1.uniquelydecodable2.satisfyKraft-McMillanInequality

wherelk

isthecodewordlength.3.instantaneouscodes

Theendofacodewordisalwaysrecognizable.Note:性質(zhì)1和2只是前綴碼的必要條件.(e.g.CodeII,CodeIII滿足性質(zhì)1和2,但只有CodeII是前綴碼.)(9.22)309.4.1PrefixCodingProperty:

4.Givenentropy,aprefixcodecanbeconstructedwithanaveragecodewordlength,whichisboundedas:(9.23)319.4.1PrefixCodingSpecialcase:

Theprefixcodeismatchedtothesourceinthat

,underthecondition.Prove:329.4.1PrefixCodingExtendedprefixcode:

Thecodeismatchedtoanarbitraydiscrete

memorylesssourcebythehighorderoftheextendedprefixcode.(→increaseddecodingcomplexity)Prove:Whereistheaveragecode-wordlengthoftheextendedprefixcode.

339.4.2HuffmanCodingAnimportantclassofprefixcodes

Basicidea

Asequenceofbitsroughlyequalinlengthtotheamountofinformationconveyedbythesymbolisassignedtoeachsymbol.

averagecode-wordlengthapproachesentropyEssenceofthealgorithmReplacetheprescribedsetofsourcestatisticswithasimplerone.349.4.2HuffmanCodingEncodingalgorithm1.Splittingstage:(i)Sourcesymbolsarelistedinorderofdecreasingprobability(P).(ii)The2symbolsoflowestPareassigneda0&1.2.Combinethe2symbolsasanewsymbolwithsumP,andreplacethesourcesymbolsasinstep1.3.Repeat2untiltwosymbolsleft.Thenthecodeforeach(original)sourcesymbolisfoundbyworkingbackwardandtracingthesequenceof0sand1sassignedtothatsymbolaswellasitssuccessors.

359.4.2HuffmanCodingExample9.3HuffmanTreeFigure9.5

(a)ExampleoftheHuffmanencodingalgorithm.(Ashighaspossible)(b)Sourcecode.369.4.2HuffmanCodingExample9.3HuffmanTree(Cont.)

Theaveragecode-wordlengthis=2.2Theentropyis=2.12193bitsTwoobservations:Theaveragecode-wordlengthexceedstheentropybyonly3.67percent.Theaveragecode-wordlengthdoesindeedsatisfytheEquation(9.23).379.4.2HuffmanCodingExample9.3HuffmanTree(Cont.)Notes:1.Encodingprocessisnotunique.(i)Arbitraryassignments

of0&1tothelasttwosourcesymbols.→trivialdifferences(ii)Ambiguousplacementofacombinedsymbolwhenitsprobabilityisequaltoanotherprobability.(ashighorlowaspossible?)→noticeabledifferences

Answer:

2.Requiresprobabilisticmodelofthesource.(Drawback)High,variance↓;Low,variance↑389.4.3Lempel-ZivCodingProblemofHuffmancode1.Itrequiresknowledgeofaprobabilisticmodelofthesource.Inpractice,sourcestatisticsarenotalwaysknownapriori.2.Storagerequirementspreventitfromcapturingthehigher-orderrelationshipsbetweenwordsandphrasesinmodelingtext.→efficiencyofthecode↓AdvantageofLempel-Zivcoding

intrinsicallyadaptiveandsimplertoimplementthanHuffmancoding399.4.3Lempel-ZivCodingBasicideaofLempel-Zivcode

EncodingintheLempel-Zivalgorithmisaccomplishedbyparsingthesourcedatastreamintosegments

thataretheshortestsubsequencesnotencounteredpreviously.

Forexample:(pp.580)

inputsequence

000101110010100101...Assume:Subsequencesstored:0,1Datatobeparsed:000101110010100101...

Result:codebookinFigure9.6

40Figure9.6

IllustratingtheencodingprocessperformedbytheLempel-Zivalgorithmonthebinarysequence000101110010100101....NumericalPositions:123456789Subsequences: 01000101110010100101Numericalrepresentations: 11124221416162Binaryencodedblocks: 0010

001110010100100011001101Binaryencodedrepresentationofthesubsequence=(binarypointertothesubsequence)+(innovationsymbol)419.4.3Lempel-ZivCodingThedecoderisjustassimpleastheencoder.

BasicconceptFixed-lengthcodesareusedtorepresentavariablenumberofsourcesymbols.→Suitableforsynchronoustransmission.Basicconcept1.Inpractice,fixedblocksof12bitslong →acodebookof4096entries2.standardalgorithmforfilecompression.Achievesacompactionofapproximately55%forEnglishtext.429.5DiscreteMemorylessChannels

AdiscretememorylesschannelisastatisticalmodelwithaninputXandanoutputYthatisanoisyversionX;bothXandYarerandomvariables.(seeFigure9.7)

inputalphabetoutputalphabettransitionprobabilitiesDefinition(9.31)(9.32)foralljandk43Figure9.7

Discretememorylesschannel.Discrete---bothofalphabetsXandYhavefinitesizesmemoryless--currentoutputsymboldependsonlyonthecurrent inputsymbolandnotanyofthepreviousones.449.5DiscreteMemorylessChannelsChannelmatrix(ortransitionmatrix)(9.35)Note:row--fixedchannelinputcolumn--fixedchanneloutputforallj459.5DiscreteMemorylessChannelsNOTE:jointprobabilitydistributionmarginalprobabilitydistributioninputprobabilitydistribution469.5DiscreteMemorylessChannelsExample9.4BinarysymmetricchannelFigure9.8Transitionprobabilitydiagramofbinarysymmetricchannel.479.6MutualInformation

HowcanwemeasuretheuncertaintyaboutXafterobservingY?Themean(9.40)(9.41)Answer:conditionalentropy--theamountofuncertaintyremainingaboutthechannelinputafterthechanneloutputhasbeenobserved.489.6MutualInformationMutualinformationH(X)--uncertaintyaboutthechannelinputbeforeobservingtheoutputH(X|Y)--uncertaintyaboutthechannelinputafter

observingtheoutputH(X)-H(X|Y)--uncertaintyaboutthechannelinputthatisresolvedbyobservingthechanneloutput(9.43)(9.44)499.6.1PropertiesofMutualInformationProperty1--symmetric

Property2--nonnegativeProperty3

Relatedtothejointentropyofthechannelinputandchanneloutputby(9.54)(9.50)(9.45)50Figure9.9

Illustratingtherelationsamongvariouschannelentropies.519.7ChannelCapacityDiscretememorylesschannelhere

Themutualinformationofachannelthereforedependsnotonlyonthechannelbutalsoonthewayinwhichthechannelused.(9.49)529.7ChannelCapacityDefinitionWedefinethechannelcapacityofadiscretememoryless

channelasthemaximummutualinformationI(X;Y)inanysingleuseoftheChannel(i.e.,signalinginterval),wherethemaximizationisoverallpossibleinputprobabilitydistributionsonX.(9.59)Subjecttoandforallj539.7ChannelCapacityNote:1.Cismeasuredinbitsperchanneluse,orbitspertransmission.2.Cisafunctiononlyofthetransitionprobabilities,whichdefinethechannel.3.ThevariationalproblemoffindingthechannelcapacityCisachallengingtask.549.7ChannelCapacityExample9.5BinarysymmetricchannelTransitionprobability(seefigure9.8)(SeeFigure9.10)Observations:1.Noisefree,p

=0,C=1(maximumvalue)2.Useless,p=1/2,C=0(minimumvalue)55Figure9.10

Variationofchannelcapacityofabinarysymmetricchannelwithtransitionprobabilityp.569.8Channel-CodingTheoremGoalIncreasetheresistanceofadigitalcommunicationsystemtochannelnoise.Why?noise→error

Figure9.11

Blockdiagramofdigitalcommunicationsystem.579.8Channel-CodingTheoremBlockcodes(n,k);coderate:r=k/nQuestion:Doesthereexistachannelcodingschemesuchthattheprobabilitythatamessagebitwillbeinerrorislessthananypositivenumberε(i.e.,arbitrarilysmallprobabilityoferror),andyetthechannelcodingschemeisefficientinthatthecoderateneednotbetoosmall?Channelcoding--introducecontrolledredundancy

toimprovereliabilitySourcecoding--reduce

redundancytoimprove efficiency589.8Channel-CodingTheoremAnswer:Shannon’ssecondtheorem(Channelcodingtheorem)1. IfExistsacodingscheme.C/Tc--criticalrate2.IfNot.ThetheoremspecifiesthechannelcapacityCasafundamentallimitontherateatwhichthetransmissionofreliableerror-freemessagescantakeplaceoveradiscretememoryless

channel.Back(9.61)(9.62)averageinformationrate≤channelcapacityperunittime599.8Channel-CodingTheoremNOTE:Anexistenceproof.(Donottellushowtoconstructagoodcode?)Nopreciseresultfortheprobabilityofsymbolerror(Pe)afterdecodingthechanneloutput.(lengthofthecode↑,Pe→0)Powerandbandwidthconstraintswerehiddeninthediscussionpresentedhere.(showupinthechannelmatrixPofthediscretememorylesschannel.)609.8Channel-CodingTheoremApplicationofthechannelcodingtheoremtobinarysymmetricchannelsSourceTs0,1sourceentropy1bitpersymbolinformationrate1/TsbpsafterencodingTccoderatertransmissionrate1/Tcsymbols/sThen,ifTheprobabilityoferrorcanbemadearbitrarilylowbytheuseofasuitablechannelencodingscheme.andFor,thereexistsacodecapableofachievinganarbitrarilylowprobabilityoferror.Back619.8Channel-CodingTheoremExample9.6RepetitioncodeBSCC=0.9192channelcodingtheorem→foranyε>0and ,thereexistsacodeoflengthnlargeenough&r&appropriatedecodingalgorithm,suchthatPe<ε.Seefigure9.1262Figure9.12

Illustratingsignificanceofthechannelcodingtheorem.639.8Channel-CodingTheoremExample9.6Repetitioncode(1,n)n=2m+1ifn=3,0->000,1->111decodingmajorityrule

m+1ormorebitsreceivedincorrectly→errorAverageprobabilityoferrorCharacteristic:exchangeofcoderateformessagereliability→Table9.3(r↓,Pe↓)649.9DifferentialEntropyandMutualInformationforContinuousEnsemblesXacontinuousrandomvariablefX(x)theprobabilitydensityfunctionWehave(9.66)h(X),thedifferentialentropyofX.Note:ItisnotameasureoftherandomnessofX.Itisdifferentfromordinaryorabsoluteentropy.659.9DifferentialEntropyandMutualInformationforContinuousEnsemblesAssumeXintheinterval,probabilityOrdinaryentropyofthecontinuousrandomvariableX669.9DifferentialEntropyandMutualInformationforContinuousEnsemblescontinuousrandomvectorconsistingofnrandomvariablesX1,X2,...,Xnthejointprobabilitydensityfunctionof

thedifferentialentropy

(9.68)679.9DifferentialEntropyandMutualInformationforContinuousEnsemblesExample9.7UniformdistributionArandomvariableXuniformlydistributedovertheinterval(0,a).TheprobabilitydensityfunctionThen,weget(9.69)Note:log2a<0fora<1.Unlikeadiscreterandomvariable,thedifferentialentropyofacontinuousrandomvariablecanbenegative.689.9DifferentialEntropyandMutualInformationforContinuousEnsemblesExample9.8GaussiandistributionX,Yrandomvariables,use(9.12)(9.70)(9.71)(9.72)Assume:1.X,Yhavethesamemeanandthesamevariance.2.XisGaussiandistributed,as699.9DifferentialEntropyandMutualInformationforContinuousEnsembles(9.73)then,(9.74)(9.75)(9.76)∵forY∴709.9DifferentialEntropyandMutualInformationforContinuousEnsemblesCombining(9.75)and(9.76),(9.77)whereequalityholds,andonlyif,fY(x)=fX(x)

.Summarize(twoentropicpropertiesofaGaussianrandomvariable)Forafinitevariance,theGaussianrandomvariablehasthelargestdifferentialentropyattainablebyanyrandomvariable.TheentropyofaGaussianrandomvariableXisuniquelydeterminedbythevarianceofX(i.e.,itisindependentofthemeanofX).719.9.1MutualInformationApairofcontinuousrandomvariablesXandYMutualinformation(9.78)Properties(9.79)(9.80)(9.81)729.9.1MutualInformationh(X),h(Y)thedifferentialentropyofX,Y.Where:h(X|Y)istheconditionaldifferentialentropyofX,givenY;h(Y|X)istheconditionaldifferentialentropyofY,givenX;(9.82)Conditionaldifferentialentropy739.10InformationCapacityTheoremInformationcapacitytheoremforband-limited,power-limitedGaussianchannels.signalX(t)azero-meanstationaryprocess,band-limitedtoBhertz.Tseconds,transmittedoveranoisychannelThenumberofsamples(9.83)XkthecontinuousrandomvariablesobtainedbyuniformsamplingoftheprocessX(t)attheNyquist

rateof2Bsamplespersecond.K=1,2,...,K749.10InformationCapacityTheoremNoise

AWGN,zeromean,powerspectraldensity=N0/2,band-limitedtoBhertz.ThenoisesampleNkisGaussianwithzeromeanandvariancegivenbyFigure9.13Modelofdiscrete-time,memorylessGaussianchannel.(9.84)(9.85)Thesamplesofreceivedsignal759.10InformationCapacityTheoremThecosttoeachchannelinput,(9.86)wherePistheaveragetransmittedpower.TheinformationcapacityofthechannelThemaximumofthemutualinformationbetweenthechannelinputXkandthechanneloutputYkoveralldistributionsontheinputXkthatsatisfythepowerconstraintofEquation(9.86).(9.87)769.10InformationCapacityTheorem(9.88)(9.89)(9.90)whereMaximizing,requiresmaximizing.Fortobemaximum,hastobeaGaussianrandomvariable.Thatis,thesamplesofthereceivedsignalrepresentanoiselikeprocess.Next,sinceisGaussianbyassumption,thesampleofthetransmittedsignalmustbeGaussiantoo.Xk

,Nk

areindependent779.10InformationCapacityTheoremso(9.91)ThemaximizationspecifiedinEquation(9.87)isattainedbychoosingthesamplesofthetransmittedsignalfromanoiselikeprocessofaaveragepowerP.ThreestagesfortheevaluationoftheinformationcapacityC1.ThevarianceofYk=so(9.92)789.10InformationCapacityTheorem2.ThevarianceofNk=(9.93)so3.Informationcapacity(9.94)equivalentform(K/TtimesC)(9.95)799.10InformationCapacityTheoremShannon’sthirdtheorem,theinformationcapacitytheorem:TheinformationcapacityofacontinuouschannelofbandwidthBhertz,perturbedbyadditivewhiteGaussiannoiseofpowerspectraldensityN0/2andlimitedinbandwidthtoB,isgivenbywherePistheaveragetransmittedpower.Thechannelcapacitytheoremdefinesthefundamentallimitontherateoferror-freetransmissionforapower-limited,band-limitedGaussianchannel.Toapproachthislimit,thetransmittedsignalmusthavestatisticalpropertiesapproximatingthoseofwhiteGaussiannoise. Back809.10.1SpherePackingPurpose:Forsupportingtheinformationcapacitytheorem.Anencodingscheme,yieldsKcodewords,codewordlength(numberofbits)=nPowerconstraint:nP,Paveragepowerperbit.Thereceivedvectorofnbits,Gaussiandistributed,MeanequaltothetransmittedcodewordVarianceequalto,thenoisevariance.819.10.1SpherePackingWithhighprobability,thereceivedvectorliesinsideasphereofradius,centeredonthetransmittedcodeword.Thissphereisitselfcontainedinalargersphereofradius,whereistheaveragepowerofthereceivedvector.Seefigure9.14Figure9.14

Thesphere-packingproblem.829.10.1SpherePackingQuestion:Howmanydecodingspherescanbepackedinsidethelargesphereofreceivedvectors?Inotherwords,howmanycodewordscanweinfactchoose?Firstrecognizethatthevolumeofann-dimensionalsphereofradiusrmaybewrittenas;isascalingfactor.Statements1.Thevolumeofthesphereofreceivedvectorsis2.Thevolumeofthedecodingsphereis839.10.1SpherePackingThemaximumnumberbenonintersectingdecodingspheresthatcanbepackedinsidethesphereofpossiblereceivedvectorsis(9.96)Example9.9Reconfigurationofconstellationforreducedpower64-QAMFigure9.159.15bhasanadvantageover9.15a:asmallertransmittedaveragesignalenergypersymbolforthesameBERonanAWGNchannel84Figure9.15

(a)Square64-QAMconstellation.(b)Themosttightlycoupledalternativetothatofparta.HighSNRonAWGNchannel,thesameBERSquaredEuclideandistancesfromthemessagepointstotheoriginb<a859.11ImplicationsoftheInformationCapacityTheoremIdealsystemRb=CAveragetransmittedpower(9.97)accordingly,theidealsystemisdefinedby(9.98)(9.99)signalenergy-per-bittonoisepowerspectraldensityratioAnidealsystemisneededtoassesstheperformanceofapracticalsystem.869.11ImplicationsoftheInformationCapacityTheorembandwidth-efficiencydiagramAplotofbandwidthefficiencyRb/BversusEb/N0.(Figure9.16)wherethecurvelabeled”capacityboundary”correspondstotheidealsystemforwhichRb=C.Observations:1.Forinfinitebandwidth,(9.100)ThisvalueiscalledShannonlimitforanAWGNchannel,assumingacoderateofzero.(-1.6dB)879.11ImplicationsoftheInformationCapacityTheoremFigure9.16

Bandwidth-efficiencydiagram.889.11ImplicationsoftheInformationCapacityTheorem(9.101)2.Thecapacityboundary,definedbythecurveforthecriticalbitrateRb=C.Rb<C,error-freetransmissionRb>C,error-freetransmissionisnotpossible3.Thediagramhighlightspotentialtrade-offsamongEb/N0,Rb/B,andprobabilityofsymbolerrorPe.899.11ImplicationsoftheInformationCapacityTheoremExample9.10M-aryPCMAssumption:

Thesystemoperatesabovethethreshold.Theaverageprobabilityoferrorduetochannelnoiseisnegligible.acodeword:ncodeelements,eachhavingoneofMpossiblediscreteamplitudelevels.noisemargin:sufficientlylargetomaintainanegligibleerrorrateduetochannelnoise.

↓TheremustbeacertainseparationbetweentheseMpossiblediscreteamplitudelevels,kconstant,noisevariance,BchannelbandwidthTheaveragetransmittedpowerwillbeleastiftheamplituderangeissymmetricalaboutzero.909.11ImplicationsoftheInformationCapacityTheorem(9.102)Thediscreteamplitudelevels,normalizedwithrespecttotheseparation,willhavethevaluetheaveragetransmittedpower(假設先驗等概)Whertz,highestfrequencycomponent2W,sampledrateL,representationlevelsofquantizer(equallylikely)themaximumrateofinformationtransmission(9.103)919.11ImplicationsoftheInformationCapacityTheorem(9.104)Forauniquecodingprocess(9.105)(9.106)(9.107)929.11ImplicationsoftheInformationCapacityTheorem(9.108)Brequiredtotransmitarectangularpulseofduration1/2nWiswhereisaconstantwithavaluelyingbetween1and2.Using=1,(minimumvalue)TheyareidenticaliftheaveragetransmittedpowerinthePCMsystemisincreasedbythefactork2/12,comparedwiththeidealsystem.PowerandbandwidthinaPCMsystemareexchange

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論