2022-2023學年山東省泰安寧陽縣聯(lián)考數(shù)學九上期末統(tǒng)考試題含解析_第1頁
2022-2023學年山東省泰安寧陽縣聯(lián)考數(shù)學九上期末統(tǒng)考試題含解析_第2頁
2022-2023學年山東省泰安寧陽縣聯(lián)考數(shù)學九上期末統(tǒng)考試題含解析_第3頁
2022-2023學年山東省泰安寧陽縣聯(lián)考數(shù)學九上期末統(tǒng)考試題含解析_第4頁
2022-2023學年山東省泰安寧陽縣聯(lián)考數(shù)學九上期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.下列圖形中的角是圓周角的是()A. B.C. D.2.如圖,直線AC,DF被三條平行線所截,若DE:EF=1:2,AB=2,則AC的值為()A.6 B.4 C.3 D.3.如圖所示的圖案是由下列哪個圖形旋轉得到的()A. B. C. D.4.如圖,∠1=∠2A.∠C=∠D B.∠B=∠AED5.已知關于x的方程x2+ax﹣6=0的一個根是2,則a的值是()A.﹣1 B.0 C.1 D.26.如圖,是的直徑,,是圓周上的點,且,則圖中陰影部分的面積為()A. B. C. D.7.方程x2+5x=0的適當解法是()A.直接開平方法 B.配方法C.因式分解法 D.公式法8.如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點M是AB上的一點,點N是CB上的一點,,當∠CAN與△CMB中的一個角相等時,則BM的值為()A.3或4 B.或4 C.或6 D.4或69.一個凸多邊形共有20條對角線,它是()邊形A.6 B.7 C.8 D.910.一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項分別是()A.3,2,1 B.3,2,-1 C.3,-2,1 D.3,-2,-1二、填空題(每小題3分,共24分)11.如圖,點在反比例函數(shù)的圖象上,過點作AB⊥軸,AC⊥軸,垂足分別為點,若,,則的值為____.12.方程的根是____.13.如圖,點A、B分別在反比例函數(shù)y=(k1>0)和y=(k2<0)的圖象上,連接AB交y軸于點P,且點A與點B關于P成中心對稱.若△AOB的面積為4,則k1-k2=______.14.據(jù)國家統(tǒng)計局數(shù)據(jù),2018年全年國內生產總值為90.3萬億,比2017年增長6.6%.假設國內生產總值的年增長率保持不變,則國內生產總值首次突破100萬億的年份是_______.15.甲、乙兩人玩撲克牌游戲,游戲規(guī)則是:從牌面數(shù)字分別為5,6,7的三張撲克牌中,隨機抽取一張,放回后,再隨機抽取一張,若所抽取的兩張牌牌面數(shù)字的積為奇數(shù),則甲獲勝;若所抽取的兩張牌牌面數(shù)字的積為偶數(shù),則乙獲勝.這個游戲________.(填“公平”或“不公平”)16.已知關于x的一元二次方程x2+px-3=0的一個根為-3,則它的另一根為________.17.已知是關于x的一元二次方程的一個解,則此方程的另一個解為____.18.如圖,在△ABC中,AC:BC:AB=3:4:5,⊙O沿著△ABC的內部邊緣滾動一圈,若⊙O的半徑為1,且圓心O運動的路徑長為18,則△ABC的周長為_____.三、解答題(共66分)19.(10分)在一個不透明的布袋中,有三個除顏色外其它均相同的小球,其中兩個黑色,一個紅色.(1)請用表格或樹狀圖求出:一次隨機取出2個小球,顏色不同的概率.(2)如果老師在布袋中加入若干個紅色小球.然后小明通過做實驗的方式猜測加入的小球數(shù),小明每次換出一個小球記錄下慎色并放回,實驗數(shù)據(jù)如下表:實驗次數(shù)1002003004005001000摸出紅球78147228304373752請你幫小明算出老師放入了多少個紅色小球.20.(6分)解方程:x2﹣x=3﹣x221.(6分)九年級1班將競選出正、副班長各1名,現(xiàn)有甲、乙兩位男生和丙、丁兩位女生參加競選.(1)男生當選班長的概率是;(2)請用列表或畫樹狀圖的方法求出兩位女生同時當選正、副班長的概率.22.(8分)小王和小張利用如圖所示的轉盤做游戲,轉盤的盤面被分為面積相等的1個扇形區(qū)域,且分別標有數(shù)字1,2,3,1.游戲規(guī)則如下:兩人各轉動轉盤一次,分別記錄指針停止時所對應的數(shù)字,如兩次的數(shù)字都是奇數(shù),則小王勝;如兩次的數(shù)字都是偶數(shù),則小張勝;如兩次的數(shù)字是奇偶,則為平局.解答下列問題:(1)小王轉動轉盤,當轉盤指針停止,對應盤面數(shù)字為奇數(shù)的概率是多少?(2)該游戲是否公平?請用列表或畫樹狀圖的方法說明理由.23.(8分)如圖,已知拋物線與軸交于、兩點,與軸交于點.(1)求拋物線的解析式;(2)點是第一象限內拋物線上的一個動點(與點、不重合),過點作軸于點,交直線于點,連接、.設點的橫坐標為,的面積為.求關于的函數(shù)解析式及自變量的取值范圍,并求出的最大值;(3)已知為拋物線對稱軸上一動點,若是以為直角邊的直角三角形,請直接寫出點的坐標.24.(8分)如圖,AB是⊙O的直徑,點C、D在⊙O上,AD與BC相交于點E.連接BD,作∠BDF=∠BAD,DF與AB的延長線相交于點F.(1)求證:DF是⊙O的切線;(2)若DF∥BC,求證:AD平分∠BAC;(3)在(2)的條件下,若AB=10,BD=6,求CE的長.25.(10分)如圖,已知拋物線經過坐標原點和軸上另一點,頂點的坐標為.矩形的頂點與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=1.(1)求該拋物線所對應的函數(shù)關系式;(2)將矩形以每秒個單位長度的速度從圖1所示的位置沿軸的正方向勻速平行移動,同時一動點也以相同的速度從點出發(fā)向勻速移動,設它們運動的時間為秒,直線與該拋物線的交點為(如圖2所示).①當,判斷點是否在直線上,并說明理由;②設P、N、C、D以為頂點的多邊形面積為,試問是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.26.(10分)如圖,在中,,,垂足為,為上一點,連接,作交于.(1)求證:.(2)除(1)中相似三角形,圖中還有其他相似三角形嗎?如果有,請把它們都寫出來.(證明不做要求)

參考答案一、選擇題(每小題3分,共30分)1、C【解析】根據(jù)圓周角的定義來判斷即可.圓周角必須符合兩個條件:頂點在圓上,兩邊與圓相交,二者缺一都不是.【詳解】解:圓周角的定義是:頂點在圓上,并且角的兩邊和圓相交的角叫圓周角.A、圖中的角的頂點不在圓上,不是圓周角;B、圖中的角的頂點也不在圓上,不是圓周角;C、圖中的角的頂點在圓上,兩邊與圓相交,是圓周角;D.圖中的角的頂點在圓上,而兩邊與圓不相交,不是圓周角;故選:【點睛】本題考查了圓周角的定義.圓周角必須符合兩個條件.2、A【分析】根據(jù)平行線分線段成比例定理得到比例式,求出BC,計算即可.【詳解】解:∵l1∥l2∥l3,∴,又∵AB=2,∴BC=4,∴AC=AB+BC=1.

故選:A.【點睛】本題考查的是平行線分線段成比例定理,靈活運用定理、找準對應關系是解題的關鍵.3、D【解析】由一個基本圖案可以通過旋轉等方法變換出一些復合圖案.【詳解】由圖可得,如圖所示的圖案是由繞著一端旋轉3次,每次旋轉90°得到的,

故選:D.【點睛】此題考查旋轉變換,解題關鍵是利用旋轉中的三個要素(①旋轉中心;②旋轉方向;③旋轉角度)設計圖案.通過旋轉變換不同角度或者繞著不同的旋轉中心向著不同的方向進行旋轉都可設計出美麗的圖案.4、D【解析】求出∠DAE=∠BAC,根據(jù)選項條件判定三角形相似后,可得對應邊成比例,再把比例式化為等積式后即可判斷.【詳解】解:∵∠1=∠2,

∴∠1+∠BAE=∠2+∠BAE,

∴∠DAE=∠BAC,

A、∵∠DAE=∠BAC,∠D=∠C,

∴△ADE∽△ACB,∴AEAB∴AB·故本選項錯誤;

B、∵∠B=∠AED,∠DAE=∠BAC,

∴△ADE∽△ACB∴AEAB∴AB·故本選項錯誤;

C、∵AEAB=ADAC,∠∴△ADE∽△ACB,∴AEAB∴AB·故本選項錯誤;

D、∵∠DAE=∠BAC,AEAC=ADAB,

∴△∴ADAB∴AB·故本選項正確;

故選:D.【點睛】本題考查了相似三角形的判定和性質的應用,比例式化等積式,特別要注意確定好對應邊,不要找錯了.5、C【解析】一元二次方程的根就是能夠使方程左右兩邊相等的未知數(shù)的值.利用方程解的定義將x=2代入方程式即可求解.【詳解】解:將x=2代入x2+ax﹣6=2,得22+2a﹣6=2.解得a=2.故選C.【點睛】本題考查的是一元二次方程的根的定義,把求未知系數(shù)的問題轉化為解方程的問題.6、D【分析】連接OC,過點C作CE⊥OB于點E,根據(jù)圓周角定理得出,則有是等邊三角形,然后利用求解即可.【詳解】連接OC,過點C作CE⊥OB于點E∴是等邊三角形故選:D.【點睛】本題主要考查圓周角定理及扇形的面積公式,掌握圓周角定理及扇形的面積公式是解題的關鍵.7、C【分析】因為方程中可以提取公因式x,所以該方程適合用因式分解法.因式分解為x(x+5)=0,解得x=0或x=-5.用因式分解法解該方程會比較簡單快速.【詳解】解:∵x2+5x=0,∴x(x+5)=0,則x=0或x+5=0,解得:x=0或x=﹣5,故選:C.【點睛】本題的考點是解一元二次方程.方法是熟記一元二次方程的幾種解法,也可用選項的四種方法分別解題,選擇最便捷的方法.8、D【分析】分兩種情形:當時,,設,,可得,解出值即可;當時,過點作,可得,得出,,則,證明,得出方程求解即可.【詳解】解:在Rt△ABC中,∠ACB=90°,AC=1,BC=8,∴,AB=10,,設,,①當時,可得,,,,.②當時,如圖2中,過點作,可得,,,,,,,,,,,,.綜上所述,或1.故選:D.【點睛】本題考相似三角形的判定和性質,解題的關鍵是學會用分類討論的思想思考問題,學會添加常用輔助線,構造相似三角形解決問題.9、C【分析】根據(jù)多邊形的對角線的條數(shù)公式列式進行計算即可求解.【詳解】解:設該多邊形的邊數(shù)為n,由題意得:,解得:(舍去)故選:C.【點睛】本題主要考查了多邊形的對角線公式,熟記公式是解題的關鍵.10、D【解析】根據(jù)一元二次方程一般式的系數(shù)概念,即可得到答案.【詳解】一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項分別是:3,-2,-1,故選D.【點睛】本題主要考查一元二次方程一般式的系數(shù)概念,掌握一元二次方程一般式的系數(shù),是解題的關鍵.二、填空題(每小題3分,共24分)11、【分析】求出點A坐標,即可求出k的值.【詳解】解:根據(jù)題意,設點A的坐標為(x,y),∵,,AB⊥軸,AC⊥軸,∴點A的橫坐標為:;點A的縱坐標為:;∵點A在反比例函數(shù)的圖象上,∴;故答案為:.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)解析式,解題的關鍵是熟練掌握反比例函數(shù)圖象上點的坐標特征.12、,【分析】把方程變形為,把方程左邊因式分解得,則有y=0或y-5=0,然后解一元一次方程即可.【詳解】解:,∴,∴y=0或y-5=0,∴.故答案為:.【點睛】此題考查了解一元二次方程-因式分解法,其步驟為:移項,化積,轉化和求解這幾個步驟.13、1【分析】作AC⊥y軸于C,BD⊥y軸于D,如圖,先證明△ACP≌△BDP得到S△ACP=S△BDP,利用等量代換和k的幾何意義得到=S△AOC+S△BOD=×|k1|+|k2|=4,然后利用k1<0,k2>0可得到k2-k1的值.【詳解】解:作AC⊥y軸于C,BD⊥y軸于D,如圖,∵點A與點B關于P成中心對稱.

∴P點為AB的中點,

∴AP=BP,

在△ACP和△BDP中,

∴△ACP≌△BDP(AAS),

∴S△ACP=S△BDP,

∴S△AOB=S△APO+S△BPO=S△AOC+S△BOD=×|k1|+|k2|=4,∴|k1|+|k2|=1

∵k1>0,k2<0,

∴k1-k2=1.

故答案為1.【點睛】本題考查了比例系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.在反比例函數(shù)的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是|k|,且保持不變.也考查了反比例函數(shù)的性質.14、2020【分析】根據(jù)題意分別求出2019年全年國內生產總值、2020年全年國內生產總值,得到答案.【詳解】解:2019年全年國內生產總值為:90.3×(1+6.6%)=96.2598(萬億),

2020年全年國內生產總值為:96.2598×(1+6.6%)≈102.6(萬億),

∴國內生產總值首次突破100萬億的年份是2020年,

故答案為:2020.【點睛】本題考查的是有理數(shù)的混合運算,掌握有理數(shù)的混合運算法則、正確列出算式是解題的關鍵.15、不公平.【分析】先根據(jù)題意畫出樹狀圖,然后根據(jù)概率公式求解即可.【詳解】畫出樹狀圖如下:共有9種情況,積為奇數(shù)有4種情況所以,P(積為奇數(shù))=即甲獲勝的概率是,乙獲勝的概率是所以這個游戲不公平.【點睛】解題的關鍵是熟練掌握概率的求法:概率=所求情況數(shù)與總情況數(shù)的比值.16、1【分析】根據(jù)根與系數(shù)的關系得出?3x=?6,求出即可.【詳解】設方程的另一個根為x,則根據(jù)根與系數(shù)的關系得:?3x=?3,解得:x=1,故答案為:1.【點睛】本題考查了根與系數(shù)的關系和一元二次方程的解,能熟記根與系數(shù)的關系的內容是解此題的關鍵.17、【分析】將x=-3代入原方程,解一元二次方程即可解題.【詳解】解:將x=-3代入得,a=-1,∴原方程為,解得:x=1或-3,【點睛】本題考查了含參的一元二次方程的求解問題,屬于簡單題,熟悉概念是解題關鍵.18、4【分析】如圖,首先利用勾股定理判定△ABC是直角三角形,由題意得圓心O所能達到的區(qū)域是△DEG,且與△ABC三邊相切,設切點分別為G、H、P、Q、M、N,連接DH、DG、EP、EQ、FM、FN,根據(jù)切線性質可得:AG=AH,PC=CQ,BN=BM,DG、EP分別垂直于AC,EQ、FN分別垂直于BC,F(xiàn)M、DH分別垂直于AB,繼而則有矩形DEPG、矩形EQNF、矩形DFMH,從而可知DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°,根據(jù)題意可知四邊形CPEQ是邊長為1的正方形,根據(jù)相似三角形的判定可得△DEF∽△ACB,根據(jù)相似三角形的性質可知:DE∶EF∶FD=AC∶CB∶BA=3∶4∶1,進而根據(jù)圓心O運動的路徑長列出方程,求解算出DE、EF、FD的長,根據(jù)矩形的性質可得:GP、QN、MH的長,根據(jù)切線長定理可設:AG=AH=x,BN=BM=y(tǒng),根據(jù)線段的和差表示出AC、BC、AB的長,進而根據(jù)AC∶CB∶BA=3∶4∶1列出比例式,繼而求出x、y的值,進而即可求解△ABC的周長.【詳解】∵AC∶CB∶BA=3∶4∶1,設AC=3a,CB=4a,BA=1a(a>0)∴∴△ABC是直角三角形,設⊙O沿著△ABC的內部邊緣滾動一圈,如圖所示,連接DE、EF、DF,設切點分別為G、H、P、Q、M、N,連接DH、DG、EP、EQ、FM、FN,根據(jù)切線性質可得:AG=AH,PC=CQ,BN=BMDG、EP分別垂直于AC,EQ、FN分別垂直于BC,F(xiàn)M、DH分別垂直于AB,∴DG∥EP,EQ∥FN,F(xiàn)M∥DH,∵⊙O的半徑為1∴DG=DH=PE=QE=FN=FM=1,則有矩形DEPG、矩形EQNF、矩形DFMH,∴DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°又∵∠CPE=∠CQE=90°,PE=QE=1∴四邊形CPEQ是正方形,∴PC=PE=EQ=CQ=1,∵⊙O的半徑為1,且圓心O運動的路徑長為18,∴DE+EF+DF=18,∵DE∥AC,DF∥AB,EF∥BC,∴∠DEF=∠ACB,∠DFE=∠ABC,∴△DEF∽△ABC,∴DE:EF:DF=AC:BC:AB=3:4:1,設DE=3k(k>0),則EF=4k,DF=1k,∵DE+EF+DF=18,∴3k+4k+1k=18,解得k=,∴DE=3k=,EF=4k=6,DF=1k=,根據(jù)切線長定理,設AG=AH=x,BN=BM=y(tǒng),則AC=AG+GP+CP=x++1=x+1.1,BC=CQ+QN+BN=1+6+y=y(tǒng)+2,AB=AH+HM+BM=x++y=x+y+2.1,∵AC:BC:AB=3:4:1,∴(x+1.1):(y+2):(x+y+2.1)=3:4:1,解得x=2,y=3,∴AC=2.1,BC=10,AB=3.1,∴AC+BC+AB=4.所以△ABC的周長為4.故答案為4.【點睛】本題是一道動圖形問題,考查切線的性質定理、相似三角形的判定與性質、矩形的判定與性質、解直角三角形等知識點,解題的關鍵是確定圓心O的軌跡,學會作輔助線構造相似三角形,綜合運用上述知識點.三、解答題(共66分)19、(1)P=;(2)加入了5個紅球【分析】(1)利用列表法表示出所有可能,進而得出結論即可;(2)根據(jù)概率列出相應的方程,求解即可.【詳解】(1)列表如圖,黑1黑2紅黑1/(黑1,黑2)(黑1,紅)黑2(黑2,黑1)/(黑2,紅)紅(紅,黑1)(紅,黑2)/一共有6種等可能事件,其中顏色不同的等可能事件有4種,∴顏色不同的概率為P=(2)由圖表可得摸到紅球概率為設加入了x個紅球=解得x=5經檢驗x=5是原方程的解答:加入了5個紅球?!军c睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.20、x=或x=-1.【分析】根據(jù)因式分解法即可求出答案.【詳解】原方程化為2x2-x-3=0,∴(2x-3)(x+1)=0,∴x=或x=-1.【點睛】本題考查一元二次方程,解題的關鍵是熟練運用一元二次方程的解法,本題屬于基礎題型.21、(1)(2)【詳解】解:(1);(2)樹狀圖為;所以,兩位女生同時當選正、副班長的概率是.(列表方法求解略)·(1)男生當選班長的概率=(2)與課本上摸球一樣,畫出樹狀圖即可22、(1);(2)該游戲公平.【分析】(1)根據(jù)概率公式直接計算即可;

(2)畫樹狀圖得出所有等可能的情況數(shù),找出兩指針所指數(shù)字都是偶數(shù)或都是奇數(shù)的概率即可得知該游戲是否公平.【詳解】解:(1)小王轉動轉盤,當轉盤指針停止,對應盤面數(shù)字為奇數(shù)的概率=;(2)該游戲公平.理由如下:畫樹狀圖為:共有16種等可能的結果數(shù),其中兩次的數(shù)字都是奇數(shù)的結果數(shù)為1,所以小王勝的概率=;兩次的數(shù)字都是偶數(shù)的結果數(shù)為1,所以小張勝的概率=,因為小王勝的概率與小張勝的概率相等,所以該游戲公平.【點睛】本題考查的知識點是游戲公平性,概率公式,樹狀圖法,解題關鍵是熟練運用樹狀圖法.23、(1);(2),當時,有最大值,最大值;(2),【解析】(1)由拋物線與x軸的兩個交點坐標可設拋物線的解析式為y=a(x+1)(x-2),將點C(0,2)代入拋物線解析式中即可得出關于a一元一次方程,解方程即可求出a的值,從而得出拋物線的解析式;(2)設直線BC的函數(shù)解析式為y=kx+b.結合點B、點C的坐標利用待定系數(shù)法求出直線BC的函數(shù)解析式,再由點D橫坐標為m找出點D、點E的坐標,結合兩點間的距離公式以及三角形的面積公式求出函數(shù)解析式,利用配方法將S關于m的函數(shù)關系式進行變形,從而得出結論;(2)先求出對稱軸,設M(1,y),然后分分BM為斜邊和CM為斜邊兩種情況求解即可;【詳解】解:(1)∵拋物線與x軸交于A(-1,0)、B(2,0)兩點,∴設拋物線的解析式為y=a(x+1)(x-2),又∵點C(0,2)在拋物線圖象上,∴2=a×(0+1)×(0-2),解得:a=-1.∴拋物線解析式為y=-(x+1)(x-2)=-x2+2x+2.∴拋物線解析式為;(2)設直線的函數(shù)解析式為,∵直線過點,,∴,解得,∴,設,,∴,∴,∵,∴當時,有最大值,最大值;(2)∵,∴對稱軸為直線x=1,設M(1,y),則CM2=1+(y-2)2=y2-6y+10,BM2=y2+(1-2)2=y2+4,BC2=9+9=18.當BM為斜邊時,則y2-6y+10+18=y2+4,解得y=4,此時M(1,4);當CM為斜邊時,y2+4+18=y2-6y+10,解得y=-2,此時M(1,-2);綜上可得點的坐標為,.【點睛】本題考查了二次函數(shù)的性質、待定系數(shù)法求函數(shù)解析式、兩點間的距離公式、三角形的面積公式以及勾股定理,解題的關鍵:(1)待定系數(shù)法求函數(shù)解析式;(2)求出S與m的關系式;(2)分類討論.24、(1)證明見解析;(2)證明見解析;(3).【分析】(1)如圖,連結OD,只需推知OD⊥DF即可證得結論;(2)根據(jù)平行線的性質得到∠FDB=∠CBD,由圓周角的性質可得∠CAD=∠BAD=∠CBD=∠BDF,即AD平分∠BAC;(3)由勾股定理可求AD的長,通過△BDE∽△ADB,可得,可求DE=,AE=,由銳角三角函數(shù)可求CE的長.【詳解】(1)連接OD,CD,∵AB是直徑,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∵OA=OD,∴∠BAD=∠ADO,∵∠BDF=∠BAD,∴∠BDF+∠ODB=90°,∴∠ODF=90°,∴OD⊥DF,∴DF是⊙O的切線;(2)∵DF∥BC,∴∠F

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論