![微積分英文版教學(xué)課件:8-1 Limits of Sequences of Numbers_第1頁](http://file4.renrendoc.com/view/1313a3ca1d75b064c7c2d940ed6b95ff/1313a3ca1d75b064c7c2d940ed6b95ff1.gif)
![微積分英文版教學(xué)課件:8-1 Limits of Sequences of Numbers_第2頁](http://file4.renrendoc.com/view/1313a3ca1d75b064c7c2d940ed6b95ff/1313a3ca1d75b064c7c2d940ed6b95ff2.gif)
![微積分英文版教學(xué)課件:8-1 Limits of Sequences of Numbers_第3頁](http://file4.renrendoc.com/view/1313a3ca1d75b064c7c2d940ed6b95ff/1313a3ca1d75b064c7c2d940ed6b95ff3.gif)
![微積分英文版教學(xué)課件:8-1 Limits of Sequences of Numbers_第4頁](http://file4.renrendoc.com/view/1313a3ca1d75b064c7c2d940ed6b95ff/1313a3ca1d75b064c7c2d940ed6b95ff4.gif)
![微積分英文版教學(xué)課件:8-1 Limits of Sequences of Numbers_第5頁](http://file4.renrendoc.com/view/1313a3ca1d75b064c7c2d940ed6b95ff/1313a3ca1d75b064c7c2d940ed6b95ff5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、Chapter 8Infinite Sequences and Series8.1 Limits of Sequences of Numbers8.2 Subsequences, Bounded Sequences, and Picards Method8.3 Infinite Series8.4 Series of Nonnegative Terms8.5 Alternating Series,Absolute and Conditional Convergence8.6 Power Series8.7 Taylor and Maclaurin Series8.8 Applications
2、of Power Series8.9 Fourier Series8.10 Fourier Cosine and Sine Series A sequence can be thought of as a list of numbers written in a definite order:is the nth term.8.1 Limits of Sequences of NumbersFor example:Find a formula for the general term ofthe sequence assuming that the patternof the first fe
3、w terms continues.exampleThere are some sequences that dont have a simple defining equation.The sequence where is the population of the world as of January1 in the year n. exampleFor example:It is obvious that the terms of the sequences n/(n+1) are approaching 1 as n becomes large. In fact the diffe
4、rence can be made as small as we like by taking n sufficiently large. We indicate this by writing In general ,we have the definition:The following figure illustrates Definition 1 by showing the graphs of two sequences that have the limit L.For example: A more precise version of Definition 1 is as fo
5、llows:Geometrical interpretation:ExampleProve that Proof1.Guessing a value for Let be a given positive number.We should chooseIfWe haveSo when2.Showing that this works.givenLetIf then Therefore , by the definition of a limit,Theorem:Example:Solution:Find The Sandwich Theorem for Sequencesholds for a
6、ll beyond some index And if then also. snwid Let and be sequences of real numbers. IfSolution:that is: then:Example:Then:The Continuous Function Theorem for Sequencesthen . Let be a sequences of real numbers. If and if is a function that is continuous at and defined at all It is obvious that:Geometrical meaning:Example:Solution:ThereforeSinceExample:For example:8.2 Subsequences, Bounded Sequ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 晉教版地理八年級(jí)上冊《2.1 千姿百態(tài)的地表形態(tài)》聽課評(píng)課記錄3
- 哈爾濱工程大學(xué)《Hadoop大數(shù)據(jù)存儲(chǔ)與計(jì)算》2023-2024學(xué)年第二學(xué)期期末試卷
- 赤峰應(yīng)用技術(shù)職業(yè)學(xué)院《結(jié)構(gòu)設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川城市職業(yè)學(xué)院《ProgrammingⅠ》2023-2024學(xué)年第二學(xué)期期末試卷
- 新北區(qū)三年級(jí)數(shù)學(xué)上冊《筆算三位數(shù)除以一位數(shù)(首位不能整除)》聽評(píng)課記錄
- 青島農(nóng)業(yè)大學(xué)海都學(xué)院《世界古代史1》2023-2024學(xué)年第二學(xué)期期末試卷
- 茂名職業(yè)技術(shù)學(xué)院《通信原理C》2023-2024學(xué)年第二學(xué)期期末試卷
- 吉林科技職業(yè)技術(shù)學(xué)院《木結(jié)構(gòu)工程保護(hù)學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 湘教版數(shù)學(xué)九年級(jí)上冊1.2《反比例函數(shù)圖象與性質(zhì)》聽評(píng)課記錄2
- 衡陽幼兒師范高等??茖W(xué)?!稖夭W(xué)研究進(jìn)展》2023-2024學(xué)年第二學(xué)期期末試卷
- 提高攜帶雙J管患者的健康教育落實(shí)率泌尿科品管圈課件
- 《隋朝的統(tǒng)一與滅亡》 -完整版課件
- API-650-1鋼制焊接石油儲(chǔ)罐
- 職業(yè)危害告知書(最新版)
- 金融科技課件(完整版)
- 醫(yī)院壓力性損傷患者質(zhì)控標(biāo)準(zhǔn)
- 醫(yī)療機(jī)構(gòu)規(guī)章制度診所診所規(guī)章制度
- 飲品店操作流程圖
- 風(fēng)居住的街道鋼琴二胡合奏譜
- PADS元件封裝制作規(guī)范要點(diǎn)
- 第一講數(shù)字合成技術(shù)概述
評(píng)論
0/150
提交評(píng)論