2021-2022學年湖南省五市十校高考數(shù)學一模試卷含解析_第1頁
2021-2022學年湖南省五市十校高考數(shù)學一模試卷含解析_第2頁
2021-2022學年湖南省五市十校高考數(shù)學一模試卷含解析_第3頁
2021-2022學年湖南省五市十校高考數(shù)學一模試卷含解析_第4頁
2021-2022學年湖南省五市十校高考數(shù)學一模試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項1考試結束后,請將本試卷和答題卡一并交回2答題前,請務必將自己的姓名、準考證號用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目

2、要求的。1已知x,y滿足不等式組,則點所在區(qū)域的面積是( )A1B2CD2已知正項數(shù)列滿足:,設,當最小時,的值為( )ABCD3已知底面為正方形的四棱錐,其一條側棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的( )ABCD4已知,復數(shù),且為實數(shù),則( )ABC3D-35直線l過拋物線的焦點且與拋物線交于A,B兩點,則的最小值是A10B9C8D76拋物線的焦點為,點是上一點,則( )ABCD7已知雙曲線:的左右焦點分別為,為雙曲線上一點,為雙曲線C漸近線上一點,均位于第一象限,且,則雙曲線的離心率為( )ABCD8連接雙曲線及的4個頂點的四邊形面積為,連接4個焦點的四邊形的面積為,則當取

3、得最大值時,雙曲線的離心率為( )ABCD9已知,若,則向量在向量方向的投影為( )ABCD10函數(shù)的圖象大致是( )ABCD11若函數(shù)滿足,且,則的最小值是( )ABCD12年某省將實行“”的新高考模式,即語文、數(shù)學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為ABCD二、填空題:本題共4小題,每小題5分,共20分。13設等比數(shù)列的前項和為,若,則_14在中,已知,則A的值是_.15在一次醫(yī)療救助活動中,需要從A醫(yī)院某科室的6名男醫(yī)生、4名女醫(yī)生中分別抽調3名男醫(yī)生、2名女醫(yī)生,且男醫(yī)生中唯一的主任

4、醫(yī)師必須參加,則不同的選派案共有_種.(用數(shù)字作答)16已知隨機變量服從正態(tài)分布,若,則_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知為各項均為整數(shù)的等差數(shù)列,為的前項和,若為和的等比中項,.(1)求數(shù)列的通項公式;(2)若,求最大的正整數(shù),使得.18(12分) 選修4-5:不等式選講:已知函數(shù).(1)當時,求不等式的解集;(2)設,且的最小值為.若,求的最小值.19(12分)已知函數(shù)的定義域為,且滿足,當時,有,且.(1)求不等式的解集;(2)對任意,恒成立,求實數(shù)的取值范圍.20(12分)若正數(shù)滿足,求的最小值.21(12分)設函數(shù)().(1)討論函數(shù)

5、的單調性;(2)若關于x的方程有唯一的實數(shù)解,求a的取值范圍.22(10分)設點,動圓經(jīng)過點且和直線相切.記動圓的圓心的軌跡為曲線.(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,且直線與軸交于點,設,求證:為定值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】畫出不等式表示的平面區(qū)域,計算面積即可.【詳解】不等式表示的平面區(qū)域如圖:直線的斜率為,直線的斜率為,所以兩直線垂直,故為直角三角形,易得,所以陰影部分面積.故選:C.【點睛】本題考查不等式組表示的平面區(qū)域面積的求法,考查數(shù)形結合思想和運算能力,屬于??碱}

6、.2B【解析】由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,當且僅當時取得最小值,此時.故選:B【點睛】本題主要考查了數(shù)列中的最值問題,遞推公式的應用,基本不等式求最值,考查了學生的運算求解能力.3C【解析】試題分析:通過對以下四個四棱錐的三視圖對照可知,只有選項C是符合要求的.考點:三視圖4B【解析】把和 代入再由復數(shù)代數(shù)形式的乘法運算化簡,利用虛部為0求得m值【詳解】因為為實數(shù),所以,解得.【點睛】本題考查復數(shù)的概念,考查運算求解能力.5B【解析】根據(jù)拋物線中過焦點的兩段線段關系,可得;再由基本不等式可求得的最小值【詳解】由拋物線標準方程可知p=2因

7、為直線l過拋物線的焦點,由過拋物線焦點的弦的性質可知 所以 因為 為線段長度,都大于0,由基本不等式可知,此時所以選B【點睛】本題考查了拋物線的基本性質及其簡單應用,基本不等式的用法,屬于中檔題6B【解析】根據(jù)拋物線定義得,即可解得結果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎題.7D【解析】 由雙曲線的方程的左右焦點分別為,為雙曲線上的一點,為雙曲線的漸近線上的一點,且都位于第一象限,且,可知為的三等分點,且,點在直線上,并且,則,設,則,解得,即,代入雙曲線的方程可得,解得,故選D點睛:本題考查了雙曲線的幾何性質,離心率的求法,考查了轉化思想以及運

8、算能力,雙曲線的離心率是雙曲線最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:求出,代入公式;只需要根據(jù)一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍)8D【解析】先求出四個頂點、四個焦點的坐標,四個頂點構成一個菱形,求出菱形的面積,四個焦點構成正方形,求出其面積,利用重要不等式求得取得最大值時有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個頂點的坐標為,四個焦點的坐標為,四個頂點形成的四邊形的面積,四個焦點連線形成的四邊形的面積,所以,當取得最大值時有,離心率,故選:D.【點睛】該題考查的是有

9、關雙曲線的離心率的問題,涉及到的知識點有共軛雙曲線的頂點,焦點,菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.9B【解析】由,再由向量在向量方向的投影為化簡運算即可【詳解】, 向量在向量方向的投影為.故選:B.【點睛】本題考查向量投影的幾何意義,屬于基礎題10A【解析】根據(jù)復合函數(shù)的單調性,同增異減以及采用排除法,可得結果.【詳解】當時,由在遞增,所以在遞增又是增函數(shù),所以在遞增,故排除B、C當時,若,則所以在遞減,而是增函數(shù)所以在遞減,所以A正確,D錯誤故選:A【點睛】本題考查具體函數(shù)的大致圖象的判斷,關鍵在于對復合函數(shù)單調性的理解,記住常用的結論:增+增=增,增-減=增

10、,減+減=減,復合函數(shù)單調性同增異減,屬中檔題.11A【解析】由推導出,且,將所求代數(shù)式變形為,利用基本不等式求得的取值范圍,再利用函數(shù)的單調性可得出其最小值.【詳解】函數(shù)滿足,即,即,則,由基本不等式得,當且僅當時,等號成立.,由于函數(shù)在區(qū)間上為增函數(shù),所以,當時,取得最小值.故選:A.【點睛】本題考查代數(shù)式最值的計算,涉及對數(shù)運算性質、基本不等式以及函數(shù)單調性的應用,考查計算能力,屬于中等題.12B【解析】甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B

11、二、填空題:本題共4小題,每小題5分,共20分。13【解析】由題意,設等比數(shù)列的公比為,根據(jù)已知條件,列出方程組,求得的值,利用求和公式,即可求解【詳解】由題意,設等比數(shù)列的公比為,因為,即,解得,所以.【點睛】本題主要考查了等比數(shù)列的通項公式,及前n項和公式的應用,其中解答中根據(jù)等比數(shù)列的通項公式,正確求解首項和公比是解答本題的關鍵,著重考查了推理與計算能力,屬于基礎題14【解析】根據(jù)正弦定理,由可得,由可得,將代入求解即得.【詳解】,即,則,則.故答案為:【點睛】本題考查正弦定理和二倍角的正弦公式,是基礎題.15【解析】首先選派男醫(yī)生中唯一的主任醫(yī)師,由題意利用排列組合公式即可確定不同的選

12、派案方法種數(shù).【詳解】首先選派男醫(yī)生中唯一的主任醫(yī)師,然后從名男醫(yī)生、名女醫(yī)生中分別抽調2名男醫(yī)生、名女醫(yī)生,故選派的方法為:.故答案為【點睛】解排列組合問題要遵循兩個原則:一是按元素(或位置)的性質進行分類;二是按事情發(fā)生的過程進行分步具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置)160.4【解析】因為隨機變量服從正態(tài)分布,利用正態(tài)曲線的對稱性,即得解.【詳解】因為隨機變量服從正態(tài)分布所以正態(tài)曲線關于對稱,所.【點睛】本題考查了正態(tài)分布曲線的對稱性在求概率中的應用,考查了學生概念理解,數(shù)形結合,數(shù)學運算的能力,屬于基礎題.三、解答題:共

13、70分。解答應寫出文字說明、證明過程或演算步驟。17(1)(2)1008【解析】(1)用基本量求出首項和公差,可得通項公式;(2)用裂項相消法求得和,然后解不等式可得【詳解】解:(1)由題得,即解得或因為數(shù)列為各項均為整數(shù),所以,即(2)令所以即,解得所以的最大值為1008【點睛】本題考查等差數(shù)列的通項公式、前項和公式,考查裂項相消法求數(shù)列的和在等差數(shù)列和等比數(shù)列中基本量法是解題的基本方法18(1) (2)【解析】(1)當時,原不等式可化為,分類討論即可求得不等式的解集;(2)由題意得,的最小值為,所以,由,得,利用基本不等式即可求解其最小值【詳解】(1)當時,原不等式可化為,當時,不等式可化

14、為,解得,此時;當時,不等式可化為,解得,此時;當時,不等式可化為,解得,此時,綜上,原不等式的解集為.(2)由題意得, ,因為的最小值為,所以,由,得,所以 ,當且僅當,即,時,的最小值為.【點睛】本題主要考查了絕對值不等式問題,對于含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解法一是運用分類討論思想,法二是運用數(shù)形結合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強化函數(shù)、數(shù)形結合與轉化化歸思想方法的靈活應用,這是命題的新動向19(1);(2).【解析】(1)利用定義法求出函數(shù)在上單調遞增,由和,求出,求出,運用單調性求出不等式的解集

15、;(2)由于恒成立,由(1)得出在上單調遞增,恒成立,設,利用三角恒等變換化簡,結合恒成立的條件,構造新函數(shù),利用單調性和最值,求出實數(shù)的取值范圍.【詳解】(1)設,所以函數(shù)在上單調遞增,又因為和,則,所以得解得,即, 故的取值范圍為;(2) 由于恒成立,恒成立,設, 則, 令, 則,所以在區(qū)間上單調遞增, 所以,根據(jù)條件,只要 ,所以.【點睛】本題考查利用定義法求函數(shù)的單調性和利用單調性求不等式的解集,考查不等式恒成立問題,還運用降冪公式、兩角和與差的余弦公式、輔助角公式,考查轉化思想和解題能力.20【解析】試題分析:由柯西不等式得,所以試題解析:因為均為正數(shù),且,所以于是由均值不等式可知,

16、當且僅當時,上式等號成立從而故的最小值為此時考點:柯西不等式21(1)當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2)或.【解析】(1)求出,對分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標準,若不恒成立,求解,即可得出結論;(2)有解,即,令,轉化求函數(shù)只有一個實數(shù)解,根據(jù)(1)中的結論,即可求解.【詳解】(1),當時,恒成立,當時,綜上,當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2),令,原方程只有一個解,只需只有一個解,即求只有一個零點時,的取值范圍,由(1)得當時,在單調遞增,且,函數(shù)只有一個零點,原方程只有一個解,當時,由(1)得在出取得極小值,也是最小值,當時,此時函數(shù)只有一個零點,原方程只有一個解,當且遞增區(qū)間時,遞減區(qū)間時;,當,有兩個零點,即原方程有兩個解,不合題意,所以的取值范圍是或.【點睛】本題考查導數(shù)的綜合應用,涉及到單調性、零點、極值最值,考查分類討論和等價轉化思想,屬于中檔題.22(1);(2)見解析【解析】(1)已知點軌跡是以為焦點,直線為準線的拋物線,由此可得曲線的方程;(2)設直線方程為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論