廣東省高一數(shù)學第二章 平面向量數(shù)量積的物理背景及其含義 必修4_第1頁
廣東省高一數(shù)學第二章 平面向量數(shù)量積的物理背景及其含義 必修4_第2頁
廣東省高一數(shù)學第二章 平面向量數(shù)量積的物理背景及其含義 必修4_第3頁
廣東省高一數(shù)學第二章 平面向量數(shù)量積的物理背景及其含義 必修4_第4頁
廣東省高一數(shù)學第二章 平面向量數(shù)量積的物理背景及其含義 必修4_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、平面向量的數(shù)量積2.4.1 平面向量數(shù)量積的物理背景及其含義2.4.2 平面向量數(shù)量積的坐標表示、模、夾角2021/8/8 星期日1定義: 一般地,實數(shù)與向量a 的積是一個向量,記作a,它的長度和方向規(guī)定如下:(1) |a|=| |a|(2) 當0時,a 的方向與a方向相同; 當0時,a 的方向與a方向相反; 特別地,當=0或a=0時, a=02021/8/8 星期日2運算律: 設a,b為任意向量,,為任意實數(shù),則有: (a)=() a (+) a=a+a (a+b)=a+b2021/8/8 星期日3已知兩個非零向量a和b,作OA=a, OB=b,則AOB= (0 180)叫做向量a與b的夾角

2、。OBA向量的夾角當0時,a與b同向;OAB當180時,a與b反向;OABB當90時,稱a與b垂直, 記為ab.OAab2021/8/8 星期日4 我們學過功的概念,即一個物體在力F的作用下產(chǎn)生位移s(如圖)FS力F所做的功W可用下式計算 W=|F| |S|cos 其中是F與S的夾角 從力所做的功出發(fā),我們引入向量“數(shù)量積”的概念。2021/8/8 星期日5 已知兩個非零向量a與b,它們的夾角為,我們把數(shù)量|a| |b|cos叫做a與b的數(shù)量積(或內(nèi)積),記作ab ab=|a| |b| cos定規(guī)定:零向量與任一向量的數(shù)量積為0。 |a| cos(|b| cos)叫做向量a在b方向上(向量b在

3、a方向上)的投影。注意:向量的數(shù)量積是一個數(shù)量。2021/8/8 星期日6 向量的數(shù)量積是一個數(shù)量,那么它什么時候為正,什么時候為負?思考:ab=|a| |b| cos當0 90時ab為正;當90 180時ab為負。當 =90時ab為零。2021/8/8 星期日7重要性質(zhì):設是非零向量,方向相同的單位向量,的夾角,則特別地OAB abB12021/8/8 星期日8解:ab = |a| |b|cos= 54cos120 =54(-1/2)= 10例1 已知|a|=5,|b|=4,a與b的夾角=120,求ab。例2 已知a=(1,1),b=(2,0),求ab。解: |a| =2, |b|=2, =

4、45 ab=|a| |b|cos= 22cos45 = 22021/8/8 星期日9ab的幾何意義:OAB|b|cos abB1等于的長度與的乘積。2021/8/8 星期日10練習:1若a =0,則對任一向量b ,有a b=02若a 0,則對任一非零向量b ,有a b03若a 0,a b =0,則b=04若a b=0,則a b中至少有一個為05若a0,a b= b c,則a=c6若a b = a c ,則bc,當且僅當a=0 時成立7對任意向量 a 有2021/8/8 星期日11二、平面向量的數(shù)量積的運算律:數(shù)量積的運算律:其中,是任意三個向量,注:2021/8/8 星期日12 則 (a +

5、b) c = ON |c| = (OM + MN) |c| = OM|c| + MN|c| = ac + bc . ONMa+bbac 向量a、b、a + b在c上的射影的數(shù)量分別是OM、MN、 ON, 證明運算律(3)2021/8/8 星期日13例 3:求證:(1)(ab)2a22abb2;(2)(ab)(ab)a2b2.證明:(1)(ab)2(ab)(ab)(ab)a(ab)baabaabbba22abb2.2021/8/8 星期日14例 3:求證:(1)(ab)2a22abb2;(2)(ab)(ab)a2b2.證明:(2)(ab)(ab)(ab)a(ab)b aabaabbb a2b2.2021/8/8 星期日15例4、的夾角為解:2021/8/8 星期日162021/8/8 星期日17作業(yè):2021/8/8 星期日183、用向量方法證明:直徑所對的圓周角為直角。ABCO如圖所示,已知O,AB為直徑,C為O上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論