版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Mining Association RulesPart IIbtbo精選網(wǎng)址 alds7/btbo/Data Mining OverviewData MiningData warehouses and OLAP (On Line Analytical Processing.)Association Rules MiningClustering: Hierarchical and Partitional approachesClassification: Decision Trees and Bayesian classifiersSequential Patterns MiningAdvan
2、ced topics: outlier detection, web miningProblem StatementI = i1, i2, , im: a set of literals, called itemsTransaction T: a set of items s.t. T IDatabase D: a set of transactionsA transaction contains X, a set of items in I, if X TAn association rule is an implication of the form X Y, where X,Y IThe
3、 rule X Y holds in the transaction set D with confidence c if c% of transactions in D that contain X also contain YThe rule X Y has support s in the transaction set D if s% of transactions in D contain X YFind all rules that have support and confidence greater than user-specified min support and min
4、 confidenceProblem Decomposition1. Find all sets of items that have minimum support (frequent itemsets)2. Use the frequent itemsets to generate the desired rulesMining Frequent Itemsets: the Key StepFind the frequent itemsets: the sets of items that have minimum supportA subset of a frequent itemset
5、 must also be a frequent itemseti.e., if AB is a frequent itemset, both A and B should be a frequent itemsetIteratively find frequent itemsets with cardinality from 1 to k (k-itemset)Use the frequent itemsets to generate association rules.The Apriori AlgorithmLk: Set of frequent itemsets of size k (
6、those with min support)Ck: Set of candidate itemset of size k (potentially frequent itemsets)L1 = frequent items;for (k = 1; Lk !=; k+) do begin Ck+1 = candidates generated from Lk; for each transaction t in database do increment the count of all candidates in Ck+1 that are contained in t Lk+1 = can
7、didates in Ck+1 with min_support endreturn k Lk;How to Generate Candidates?Suppose the items in Lk-1 are listed in orderStep 1: self-joining Lk-1 insert into Ckselect p.item1, p.item2, , p.itemk-1, q.itemk-1from Lk-1 p, Lk-1 qwhere p.item1=q.item1, , p.itemk-2=q.itemk-2, p.itemk-1 = 10Compute iceberg queries efficiently by Apriori:F
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國(guó)碳捕獲與利用 (CCU)行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025年全球及中國(guó)棉紡在線單錠測(cè)試系統(tǒng)行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 外債借款合同標(biāo)準(zhǔn)模板-
- 二零二五年度高性能纖維材料采購(gòu)合同2篇
- 終身學(xué)習(xí)者的修煉之路
- 2025年度農(nóng)業(yè)灌溉水溝改造升級(jí)工程合同范本3篇
- 二零二五年度蟲(chóng)草采摘與加工服務(wù)合同3篇
- 二零二五年度賓館客房衛(wèi)生清潔外包合同樣本3篇
- 金融機(jī)構(gòu)安保業(yè)務(wù)合同管理的關(guān)鍵點(diǎn)
- 2025年度個(gè)人房屋防水維修服務(wù)協(xié)議
- 廣西南寧市2024-2025學(xué)年八年級(jí)上學(xué)期期末義務(wù)教育質(zhì)量檢測(cè)綜合道德與法治試卷(含答案)
- 《習(xí)近平法治思想概論(第二版)》 課件 3.第三章 習(xí)近平法治思想的實(shí)踐意義
- 2025年供應(yīng)鏈管理培訓(xùn)課件
- 2025年浙江省麗水市綜合行政執(zhí)法局招聘30人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中智集團(tuán)招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 加油加氣站安全生產(chǎn)風(fēng)險(xiǎn)分級(jí)管控體系全套資料
- 教師高中化學(xué)大單元教學(xué)培訓(xùn)心得體會(huì)
- 高中語(yǔ)文日積月累23
- 彈簧分離問(wèn)題經(jīng)典題目
- 部編版高中歷史中外歷史綱要(下)世界史導(dǎo)言課課件
- 語(yǔ)言規(guī)劃課件
評(píng)論
0/150
提交評(píng)論