不等式的解集與區(qū)間的概念_第1頁
不等式的解集與區(qū)間的概念_第2頁
不等式的解集與區(qū)間的概念_第3頁
不等式的解集與區(qū)間的概念_第4頁
不等式的解集與區(qū)間的概念_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、不等式不等式不等式不等式不等式的解集與 區(qū)間的概念1x0112341. 用不等式表示數(shù)軸上的實(shí)數(shù)范圍:2. 把不等式 1x5 在數(shù)軸上表示出來x012345用不等式表示為 4x0復(fù)習(xí)2abxabxabxabxx| axbaxbaxbaxbaxbx| axbx| axbx| axba,b(a,b)(a,ba,b)閉區(qū)間開區(qū)間半開半閉區(qū)間半開半閉區(qū)間設(shè) axb其中 a,b 叫做區(qū)間的端點(diǎn)新授3axaxaxaxx ax ax ax ax| x ax| x ax| x ax| x a( ,aa ,)(,a)(a,)對于實(shí)數(shù)集 R,也可用區(qū)間( ,) 表示 新授4練習(xí)1例1用區(qū)間記法表示下列不等式的解集

2、: (1)9x10 ; (2) x0.4 解:(1)9,10 ; 用區(qū)間記法表示下列不等式的解集,并在數(shù)軸上表示這些區(qū)間:(1)2x3; (2) 3x4;(3)2x3; (4)3x4;(5) x3; (6) x4(2)(,0.4 例題5練習(xí)2例2用集合的性質(zhì)描述法表示下列區(qū)間: 解:(1) x | 4x0; (2) x | 8x7 用集合的性質(zhì)描述法表示下列區(qū)間,并在數(shù)軸上表示之 你能在數(shù)軸上表示出來嗎?(1)1,2); (2) 3,1 (1)(4,0); (2)(8 ,7.例題6例3在數(shù)軸上表示集合 x | x2 或 x1 .解: x012例題7集合名稱區(qū)間數(shù)軸表示x| 開區(qū)間(a,b)x| 閉區(qū)間a,bx| 半開半閉區(qū)間 a,b)x| 半開半閉區(qū)間(a,b集合區(qū)間數(shù)軸表示x| (a,)x| (-,a)x| a,+)x| (-,ax R(-,+)abxabxabxabxaxaxaxax歸納小結(jié)8必做題: 教材P3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論