版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、PAGE PAGE - 69 - 第十六章 分式161分式16.1.1從分?jǐn)?shù)到分式一、 教學(xué)目標(biāo)1 了解分式、有理式的概念.2理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.二、重點(diǎn)、難點(diǎn)1重點(diǎn):理解分式有意義的條件,分式的值為零的條件.2難點(diǎn):能熟練地求出分式有意義的條件,分式的值為零的條件.三、課堂引入1讓學(xué)生填寫P4思考,學(xué)生自己依次填出:,.2學(xué)生看P3的問題:一艘輪船在靜水中的最大航速為20千米/時(shí),它沿江以最大航速順流航行100千米所用實(shí)踐,與以最大航速逆流航行60千米所用時(shí)間相等,江水的流速為多少?請(qǐng)同學(xué)們跟著教師一起設(shè)未知數(shù),列方程.
2、設(shè)江水的流速為x千米/時(shí).輪船順流航行100千米所用的時(shí)間為小時(shí),逆流航行60千米所用時(shí)間小時(shí),所以=.3. 以上的式子,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?五、例題講解P5例1. 當(dāng)x為何值時(shí),分式有意義.分析已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解出字母x的取值范圍. 提問如果題目為:當(dāng)x為何值時(shí),分式無意義.你知道怎么解題嗎?這樣可以使學(xué)生一題二用,也可以讓學(xué)生更全面地感受到分式及有關(guān)概念.(補(bǔ)充)例2. 當(dāng)m為何值時(shí),分式的值為0?(1) (2) (3) 分析 分式的值為0時(shí),必須同時(shí)滿足兩個(gè)條件: eq oac(,1)分母不能為零; eq oac(,2)分子為零
3、,這樣求出的m的解集中的公共部分,就是這類題目的解六、隨堂練習(xí)1判斷下列各式哪些是整式,哪些是分式?9x+4, , , , ,2. 當(dāng)x取何值時(shí),下列分式有意義? (1) (2) (3)3. 當(dāng)x為何值時(shí),分式的值為0?(1) (2) (3) 七、課后練習(xí)1.列代數(shù)式表示下列數(shù)量關(guān)系,并指出哪些是正是?哪些是分式? (1)甲每小時(shí)做x個(gè)零件,則他8小時(shí)做零件 個(gè),做80個(gè)零件需 小時(shí).(2)輪船在靜水中每小時(shí)走a千米,水流的速度是b千米/時(shí),輪船的順流速度是 千米/時(shí),輪船的逆流速度是 千米/時(shí).(3)x與y的差于4的商是 .2當(dāng)x取何值時(shí),分式 無意義?3. 當(dāng)x為何值時(shí),分式 的值為0 課
4、后反思:16.1.2分式的基本性質(zhì)一、教學(xué)目標(biāo)1理解分式的基本性質(zhì). 2會(huì)用分式的基本性質(zhì)將分式變形.二、重點(diǎn)、難點(diǎn)1重點(diǎn): 理解分式的基本性質(zhì).2難點(diǎn): 靈活應(yīng)用分式的基本性質(zhì)將分式變形.三、例、習(xí)題的意圖分析1P7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變.2P9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分.值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡(jiǎn)分式;通分是要正確地確定各個(gè)分母的最簡(jiǎn)公分母,一般的取系數(shù)的最小公倍數(shù),以及
5、所有因式的最高次冪的積,作為最簡(jiǎn)公分母.教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對(duì)相應(yīng)概念及方法的理解.3P11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變.“不改變分式的值,使分式的分子和分母都不含-號(hào)”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5.四、課堂引入1請(qǐng)同學(xué)們考慮: 與 相等嗎? 與 相等嗎?為什么?2說出 與 之間變形的過程, 與 之間變形的過程,并說出變形依據(jù)? 3提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基
6、本性質(zhì).五、例題講解P7例2.填空:分析應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變.P11例3約分:分析 約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變.所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡(jiǎn)分式.P11例4通分:分析 通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的最高次冪的積,作為最簡(jiǎn)公分母.(補(bǔ)充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號(hào). , , , , 。分析每個(gè)分式的分子、分母和分式本身都有自己的符號(hào),其中兩個(gè)符號(hào)同時(shí)改變,分式的值不變.解:= , =,=, = , =。六、
7、隨堂練習(xí)1填空:(1) = (2) = (3) = (4) =2約分:(1) (2) (3) (4)3通分:(1)和 (2)和 (3)和 (4)和4不改變分式的值,使下列分式的分子和分母都不含“-”號(hào). (1) (2) (3) (4) 七、課后練習(xí)1判斷下列約分是否正確:(1)= (2)=(3)=02通分:(1)和 (2)和3不改變分式的值,使分子第一項(xiàng)系數(shù)為正,分式本身不帶“-”號(hào).(1) (2) 162分式的運(yùn)算1621分式的乘除(一)一、教學(xué)目標(biāo):理解分式乘除法的法則,會(huì)進(jìn)行分式乘除運(yùn)算.二、重點(diǎn)、難點(diǎn)1重點(diǎn):會(huì)用分式乘除的法則進(jìn)行運(yùn)算.2難點(diǎn):靈活運(yùn)用分式乘除的法則進(jìn)行運(yùn)算 .三、例、
8、習(xí)題的意圖分析1P13本節(jié)的引入還是用問題1求容積的高,問題2求大拖拉機(jī)的工作效率是小拖拉機(jī)的工作效率的多少倍,這兩個(gè)引例所得到的容積的高是,大拖拉機(jī)的工作效率是小拖拉機(jī)的工作效率的倍.引出了分式的乘除法的實(shí)際存在的意義,進(jìn)一步引出P14觀察從分?jǐn)?shù)的乘除法引導(dǎo)學(xué)生類比出分式的乘除法的法則.但分析題意、列式子時(shí),不易耽誤太多時(shí)間.2P14例1應(yīng)用分式的乘除法法則進(jìn)行計(jì)算,注意計(jì)算的結(jié)果如能約分,應(yīng)化簡(jiǎn)到最簡(jiǎn).3P14例2是較復(fù)雜的分式乘除,分式的分子、分母是多項(xiàng)式,應(yīng)先把多項(xiàng)式分解因式,再進(jìn)行約分.4P14例3是應(yīng)用題,題意也比較容易理解,式子也比較容易列出來,但要注意根據(jù)問題的實(shí)際意義可知a1
9、,因此(a-1)2=a2-2a+1a2-2+1,即(a-1)21,因此(a-1)2=a2-2a+1a2-2+1,即(a-1)2a2-1,可得出“豐收2號(hào)”單位面積產(chǎn)量高.六、隨堂練習(xí)計(jì)算(1) (2) (3) (4)-8xy (5) (6) 七、課后練習(xí)計(jì)算(1) (2) (3) (4) (5) (6) 1621分式的乘除(二)一、教學(xué)目標(biāo):熟練地進(jìn)行分式乘除法的混合運(yùn)算.二、重點(diǎn)、難點(diǎn)1重點(diǎn):熟練地進(jìn)行分式乘除法的混合運(yùn)算.2難點(diǎn):熟練地進(jìn)行分式乘除法的混合運(yùn)算.三、例、習(xí)題的意圖分析1 P17頁例4是分式乘除法的混合運(yùn)算. 分式乘除法的混合運(yùn)算先把除法統(tǒng)一成乘法運(yùn)算,再把分子、分母中能因式
10、分解的多項(xiàng)式分解因式,最后進(jìn)行約分,注意最后的結(jié)果要是最簡(jiǎn)分式或整式.教材P17例4只把運(yùn)算統(tǒng)一乘法,而沒有把25x2-9分解因式,就得出了最后的結(jié)果,教師在見解是不要跳步太快,以免學(xué)習(xí)有困難的學(xué)生理解不了,造成新的疑點(diǎn).2, P17頁例4中沒有涉及到符號(hào)問題,可運(yùn)算符號(hào)問題、變號(hào)法則是學(xué)生學(xué)習(xí)中重點(diǎn),也是難點(diǎn),故補(bǔ)充例題,突破符號(hào)問題.四、課堂引入計(jì)算(1) (2) 五、例題講解(P17)例4.計(jì)算分析 是分式乘除法的混合運(yùn)算. 分式乘除法的混合運(yùn)算先統(tǒng)一成為乘法運(yùn)算,再把分子、分母中能因式分解的多項(xiàng)式分解因式,最后進(jìn)行約分,注意最后的計(jì)算結(jié)果要是最簡(jiǎn)的. (補(bǔ)充)例.計(jì)算 (1) = (先
11、把除法統(tǒng)一成乘法運(yùn)算)= (判斷運(yùn)算的符號(hào))= (約分到最簡(jiǎn)分式)(2) = (先把除法統(tǒng)一成乘法運(yùn)算)= (分子、分母中的多項(xiàng)式分解因式)= =六、隨堂練習(xí)計(jì)算(1) (2)(3) (4)七、課后練習(xí)計(jì)算(1) (2)(3) 1621分式的乘除(三)一、教學(xué)目標(biāo):理解分式乘方的運(yùn)算法則,熟練地進(jìn)行分式乘方的運(yùn)算.二、重點(diǎn)、難點(diǎn)1重點(diǎn):熟練地進(jìn)行分式乘方的運(yùn)算.2難點(diǎn):熟練地進(jìn)行分式乘、除、乘方的混合運(yùn)算.三、例、習(xí)題的意圖分析1 P17例5第(1)題是分式的乘方運(yùn)算,它與整式的乘方一樣應(yīng)先判斷乘方的結(jié)果的符號(hào),在分別把分子、分母乘方.第(2)題是分式的乘除與乘方的混合運(yùn)算,應(yīng)對(duì)學(xué)生強(qiáng)調(diào)運(yùn)算順
12、序:先做乘方,再做乘除.2教材P17例5中象第(1)題這樣的分式的乘方運(yùn)算只有一題,對(duì)于初學(xué)者來說,練習(xí)的量顯然少了些,故教師應(yīng)作適當(dāng)?shù)难a(bǔ)充練習(xí).同樣象第(2)題這樣的分式的乘除與乘方的混合運(yùn)算,也應(yīng)相應(yīng)的增加幾題為好.分式的乘除與乘方的混合運(yùn)算是學(xué)生學(xué)習(xí)中重點(diǎn),也是難點(diǎn),故補(bǔ)充例題,強(qiáng)調(diào)運(yùn)算順序,不要盲目地跳步計(jì)算,提高正確率,突破這個(gè)難點(diǎn). 四、課堂引入計(jì)算下列各題:(1)=( ) (2) =( ) (3)=( ) 提問由以上計(jì)算的結(jié)果你能推出(n為正整數(shù))的結(jié)果嗎?五、例題講解(P17)例5.計(jì)算分析第(1)題是分式的乘方運(yùn)算,它與整式的乘方一樣應(yīng)先判斷乘方的結(jié)果的符號(hào),再分別把分子、分
13、母乘方.第(2)題是分式的乘除與乘方的混合運(yùn)算,應(yīng)對(duì)學(xué)生強(qiáng)調(diào)運(yùn)算順序:先做乘方,再做乘除.六、隨堂練習(xí)1判斷下列各式是否成立,并改正.(1)= (2)= (3)= (4)=2計(jì)算(1) (2) (3) (4) 5) (6)七、課后練習(xí)計(jì)算(1) (2) (3) 1622分式的加減(一)一、教學(xué)目標(biāo):(1)熟練地進(jìn)行同分母的分式加減法的運(yùn)算. (2)會(huì)把異分母的分式通分,轉(zhuǎn)化成同分母的分式相加減.二、重點(diǎn)、難點(diǎn)1重點(diǎn):熟練地進(jìn)行異分母的分式加減法的運(yùn)算.2難點(diǎn):熟練地進(jìn)行異分母的分式加減法的運(yùn)算.三、例、習(xí)題的意圖分析1 P18問題3是一個(gè)工程問題,題意比較簡(jiǎn)單,只是用字母n天來表示甲工程隊(duì)完成
14、一項(xiàng)工程的時(shí)間,乙工程隊(duì)完成這一項(xiàng)工程的時(shí)間可表示為n+3天,兩隊(duì)共同工作一天完成這項(xiàng)工程的.這樣引出分式的加減法的實(shí)際背景,問題4的目的與問題3一樣,從上面兩個(gè)問題可知,在討論實(shí)際問題的數(shù)量關(guān)系時(shí),需要進(jìn)行分式的加減法運(yùn)算.2 P19觀察是為了讓學(xué)生回憶分?jǐn)?shù)的加減法法則,類比分?jǐn)?shù)的加減法,分式的加減法的實(shí)質(zhì)與分?jǐn)?shù)的加減法相同,讓學(xué)生自己說出分式的加減法法則.3P20例6計(jì)算應(yīng)用分式的加減法法則.第(1)題是同分母的分式減法的運(yùn)算,第二個(gè)分式的分子式個(gè)單項(xiàng)式,不涉及到分子變號(hào)的問題,比較簡(jiǎn)單,所以要補(bǔ)充分子是多項(xiàng)式的例題,教師要強(qiáng)調(diào)分子相減時(shí)第二個(gè)多項(xiàng)式注意變號(hào);第(2)題是異分母的分式加法的
15、運(yùn)算,最簡(jiǎn)公分母就是兩個(gè)分母的乘積,沒有涉及分母要因式分解的題型.例6的練習(xí)的題量明顯不足,題型也過于簡(jiǎn)單,教師應(yīng)適當(dāng)補(bǔ)充一些題,以供學(xué)生練習(xí),鞏固分式的加減法法則.(4)P21例7是一道物理的電路題,學(xué)生首先要有并聯(lián)電路總電阻R與各支路電阻R1, R2, , Rn的關(guān)系為.若知道這個(gè)公式,就比較容易地用含有R1的式子表示R2,列出,下面的計(jì)算就是異分母的分式加法的運(yùn)算了,得到,再利用倒數(shù)的概念得到R的結(jié)果.這道題的數(shù)學(xué)計(jì)算并不難,但是物理的知識(shí)若不熟悉,就為數(shù)學(xué)計(jì)算設(shè)置了難點(diǎn).鑒于以上分析,教師在講這道題時(shí)要根據(jù)學(xué)生的物理知識(shí)掌握的情況,以及學(xué)生的具體掌握異分母的分式加法的運(yùn)算的情況,可以考
16、慮是否放在例8之后講. 四、課堂堂引入1.出示P18問題3、問題4,教師引導(dǎo)學(xué)生列出答案.引語:從上面兩個(gè)問題可知,在討論實(shí)際問題的數(shù)量關(guān)系時(shí),需要進(jìn)行分式的加減法運(yùn)算.2下面我們先觀察分?jǐn)?shù)的加減法運(yùn)算,請(qǐng)你說出分?jǐn)?shù)的加減法運(yùn)算的法則嗎?3. 分式的加減法的實(shí)質(zhì)與分?jǐn)?shù)的加減法相同,你能說出分式的加減法法則?4請(qǐng)同學(xué)們說出的最簡(jiǎn)公分母是什么?你能說出最簡(jiǎn)公分母的確定方法嗎?五、例題講解(P20)例6.計(jì)算分析 第(1)題是同分母的分式減法的運(yùn)算,分母不變,只把分子相減,第二個(gè)分式的分子式個(gè)單項(xiàng)式,不涉及到分子是多項(xiàng)式時(shí),第二個(gè)多項(xiàng)式要變號(hào)的問題,比較簡(jiǎn)單;第(2)題是異分母的分式加法的運(yùn)算,最簡(jiǎn)
17、公分母就是兩個(gè)分母的乘積.(補(bǔ)充)例.計(jì)算(1)分析 第(1)題是同分母的分式加減法的運(yùn)算,強(qiáng)調(diào)分子為多項(xiàng)式時(shí),應(yīng)把多項(xiàng)事看作一個(gè)整體加上括號(hào)參加運(yùn)算,結(jié)果也要約分化成最簡(jiǎn)分式.解:=(2)分析 第(2)題是異分母的分式加減法的運(yùn)算,先把分母進(jìn)行因式分解,再確定最簡(jiǎn)公分母,進(jìn)行通分,結(jié)果要化為最簡(jiǎn)分式.解:=六、隨堂練習(xí)計(jì)算(1) (2)(3) (4)七、課后練習(xí)計(jì)算(1) (2) (3) (4) 1622分式的加減(二)一、教學(xué)目標(biāo):明確分式混合運(yùn)算的順序,熟練地進(jìn)行分式的混合運(yùn)算.二、重點(diǎn)、難點(diǎn)1重點(diǎn):熟練地進(jìn)行分式的混合運(yùn)算.2難點(diǎn):熟練地進(jìn)行分式的混合運(yùn)算.三、例、習(xí)題的意圖分析1 P
18、21例8是分式的混合運(yùn)算. 分式的混合運(yùn)算需要注意運(yùn)算順序,式與數(shù)有相同的混合運(yùn)算順序:先乘方,再乘除,然后加減,最后結(jié)果分子、分母要進(jìn)行約分,注意最后的結(jié)果要是最簡(jiǎn)分式或整式.例8只有一道題,訓(xùn)練的力度不夠,所以應(yīng)補(bǔ)充一些練習(xí)題,使學(xué)生熟練掌握分式的混合運(yùn)算.2 P22頁練習(xí)1:寫出第18頁問題3和問題4的計(jì)算結(jié)果.這道題與第一節(jié)課相呼應(yīng),也解決了本節(jié)引言中所列分式的計(jì)算,完整地解決了應(yīng)用問題. 四、課堂引入1說出分?jǐn)?shù)混合運(yùn)算的順序.2教師指出分?jǐn)?shù)的混合運(yùn)算與分式的混合運(yùn)算的順序相同.五、例題講解(P21)例8.計(jì)算分析 這道題是分式的混合運(yùn)算,要注意運(yùn)算順序,式與數(shù)有相同的混合運(yùn)算順序:先
19、乘方,再乘除,然后加減,最后結(jié)果分子、分母要進(jìn)行約分,注意運(yùn)算的結(jié)果要是最簡(jiǎn)分式.(補(bǔ)充)計(jì)算(1)分析 這道題先做括號(hào)里的減法,再把除法轉(zhuǎn)化成乘法,把分母的“-”號(hào)提到分式本身的前邊.解: =(2)分析 這道題先做乘除,再做減法,把分子的“-”號(hào)提到分式本身的前邊.解:=六、隨堂練習(xí)計(jì)算(1) (2)(3) 七、課后練習(xí)1計(jì)算(1) (2) (3) 2計(jì)算,并求出當(dāng)-1的值. 1623整數(shù)指數(shù)冪一、教學(xué)目標(biāo):1知道負(fù)整數(shù)指數(shù)冪=(a0,n是正整數(shù)).2掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì).3會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù).二、重點(diǎn)、難點(diǎn)1重點(diǎn):掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì).2難點(diǎn):會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù)
20、.三、例、習(xí)題的意圖分析1 P23思考提出問題,引出本節(jié)課的主要內(nèi)容負(fù)整數(shù)指數(shù)冪的運(yùn)算性質(zhì).2 P24觀察是為了引出同底數(shù)的冪的乘法:,這條性質(zhì)適用于m,n是任意整數(shù)的結(jié)論,說明正整數(shù)指數(shù)冪的運(yùn)算性質(zhì)具有延續(xù)性.其它的正整數(shù)指數(shù)冪的運(yùn)算性質(zhì),在整數(shù)范圍里也都適用.3 P24例9計(jì)算是應(yīng)用推廣后的整數(shù)指數(shù)冪的運(yùn)算性質(zhì),教師不要因?yàn)檫@部分知識(shí)已經(jīng)講過,就認(rèn)為學(xué)生已經(jīng)掌握,要注意學(xué)生計(jì)算時(shí)的問題,及時(shí)矯正,以達(dá)到學(xué)生掌握整數(shù)指數(shù)冪的運(yùn)算的教學(xué)目的.4 P25例10判斷下列等式是否正確?是為了類比負(fù)數(shù)的引入后使減法轉(zhuǎn)化為加法,而得到負(fù)指數(shù)冪的引入可以使除法轉(zhuǎn)化為乘法這個(gè)結(jié)論,從而使分式的運(yùn)算與整式的運(yùn)
21、算統(tǒng)一起來.5P25最后一段是介紹會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù). 用科學(xué)計(jì)算法表示小于1的數(shù),運(yùn)用了負(fù)整數(shù)指數(shù)冪的知識(shí). 用科學(xué)計(jì)數(shù)法不僅可以表示小于1的正數(shù),也可以表示一個(gè)負(fù)數(shù).6P26思考提出問題,讓學(xué)生思考用負(fù)整數(shù)指數(shù)冪來表示小于1的數(shù),從而歸納出:對(duì)于一個(gè)小于1的數(shù),如果小數(shù)點(diǎn)后至第一個(gè)非0數(shù)字前有幾個(gè)0,用科學(xué)計(jì)數(shù)法表示這個(gè)數(shù)時(shí),10的指數(shù)就是負(fù)幾.7P26例11是一個(gè)介紹納米的應(yīng)用題,使學(xué)生做過這道題后對(duì)納米有一個(gè)新的認(rèn)識(shí).更主要的是應(yīng)用用科學(xué)計(jì)數(shù)法表示小于1的數(shù).四、課堂引入1回憶正整數(shù)指數(shù)冪的運(yùn)算性質(zhì):(1)同底數(shù)的冪的乘法:(m,n是正整數(shù));(2)冪的乘方:(m,n是正整數(shù)
22、);(3)積的乘方:(n是正整數(shù));(4)同底數(shù)的冪的除法:( a0,m,n是正整數(shù),mn);(5)商的乘方:(n是正整數(shù));2回憶0指數(shù)冪的規(guī)定,即當(dāng)a0時(shí),.3你還記得1納米=10-9米,即1納米=米嗎?4計(jì)算當(dāng)a0時(shí),=,再假設(shè)正整數(shù)指數(shù)冪的運(yùn)算性質(zhì)(a0,m,n是正整數(shù),mn)中的mn這個(gè)條件去掉,那么=.于是得到=(a0),就規(guī)定負(fù)整數(shù)指數(shù)冪的運(yùn)算性質(zhì):當(dāng)n是正整數(shù)時(shí),=(a0).五、例題講解(P24)例9.計(jì)算分析 是應(yīng)用推廣后的整數(shù)指數(shù)冪的運(yùn)算性質(zhì)進(jìn)行計(jì)算,與用正整數(shù)指數(shù)冪的運(yùn)算性質(zhì)進(jìn)行計(jì)算一樣,但計(jì)算結(jié)果有負(fù)指數(shù)冪時(shí),要寫成分式形式.(P25)例10. 判斷下列等式是否正確?
23、分析 類比負(fù)數(shù)的引入后使減法轉(zhuǎn)化為加法,而得到負(fù)指數(shù)冪的引入可以使除法轉(zhuǎn)化為乘法這個(gè)結(jié)論,從而使分式的運(yùn)算與整式的運(yùn)算統(tǒng)一起來,然后再判斷下列等式是否正確.(P26)例11.分析 是一個(gè)介紹納米的應(yīng)用題,是應(yīng)用科學(xué)計(jì)數(shù)法表示小于1的數(shù).六、隨堂練習(xí)1.填空(1)-22= (2)(-2)2= (3)(-2) 0= (4)20= ( 5)2 -3= ( 6)(-2) -3= 2.計(jì)算(1) (x3y-2)2 (2)x2y-2 (x-2y)3 (3)(3x2y-2) 2 (x-2y)3七、課后練習(xí)1. 用科學(xué)計(jì)數(shù)法表示下列各數(shù):0000 04, -0. 034, 0.000 000 45, 0. 0
24、03 0092.計(jì)算(1) (310-8)(4103) (2) (210-3)2(10-3)3163分式方程(一)一、教學(xué)目標(biāo):1了解分式方程的概念, 和產(chǎn)生增根的原因.2掌握分式方程的解法,會(huì)解可化為一元一次方程的分式方程,會(huì)檢驗(yàn)一個(gè)數(shù)是不是原方程的增根.二、重點(diǎn)、難點(diǎn)1重點(diǎn):會(huì)解可化為一元一次方程的分式方程,會(huì)檢驗(yàn)一個(gè)數(shù)是不是原方程的增根.2難點(diǎn):會(huì)解可化為一元一次方程的分式方程,會(huì)檢驗(yàn)一個(gè)數(shù)是不是原方程的增根.三、例、習(xí)題的意圖分析1 P31思考提出問題,引發(fā)學(xué)生的思考,從而引出解分式方程的解法以及產(chǎn)生增根的原因.2P32的歸納明確地總結(jié)了解分式方程的基本思路和做法.3 P33思考提出問
25、題,為什么有的分式方程去分母后得到的整式方程的解就是原方程的解,而有的分式方程去分母后得到的整式方程的解就不是原方程的解,引出分析產(chǎn)生增根的原因,及P33的歸納出檢驗(yàn)增根的方法. 4 P34討論提出P33的歸納出檢驗(yàn)增根的方法的理論根據(jù)是什么?5 教材P38習(xí)題第2題是含有字母系數(shù)的分式方程,對(duì)于學(xué)有余力的學(xué)生,教師可以點(diǎn)撥一下解題的思路與解數(shù)字系數(shù)的方程相似,只是在系數(shù)化1時(shí),要考慮字母系數(shù)不為0,才能除以這個(gè)系數(shù). 這種方程的解必須驗(yàn)根.四、課堂引入1回憶一元一次方程的解法,并且解方程2提出本章引言的問題:一艘輪船在靜水中的最大航速為20千米/時(shí),它沿江以最大航速順流航行100千米所用時(shí)間
26、,與以最大航速逆流航行60千米所用時(shí)間相等,江水的流速為多少?分析:設(shè)江水的流速為v千米/時(shí),根據(jù)“兩次航行所用時(shí)間相同”這一等量關(guān)系,得到方程.像這樣分母中含未知數(shù)的方程叫做分式方程.五、例題講解(P34)例1.解方程分析找對(duì)最簡(jiǎn)公分母x(x-3),方程兩邊同乘x(x-3),把分式方程轉(zhuǎn)化為整式方程,整式方程的解必須驗(yàn)根這道題還有解法二:利用比例的性質(zhì)“內(nèi)項(xiàng)積等于外項(xiàng)積”,這樣做也比較簡(jiǎn)便.(P34)例2.解方程分析找對(duì)最簡(jiǎn)公分母(x-1)(x+2),方程兩邊同乘(x-1)(x+2)時(shí),學(xué)生容易把整數(shù)1漏乘最簡(jiǎn)公分母(x-1)(x+2),整式方程的解必須驗(yàn)根.六、隨堂練習(xí)解方程(1) (2)
27、(3) (4)七、課后練習(xí)1解方程 (1) (2) (3) (4) 2X為何值時(shí),代數(shù)式的值等于2?163分式方程(二)一、教學(xué)目標(biāo):1會(huì)分析題意找出等量關(guān)系.2會(huì)列出可化為一元一次方程的分式方程解決實(shí)際問題.二、重點(diǎn)、難點(diǎn)1重點(diǎn):利用分式方程組解決實(shí)際問題.2難點(diǎn):列分式方程表示實(shí)際問題中的等量關(guān)系.三、例、習(xí)題的意圖分析本節(jié)的P35例3不同于舊教材的應(yīng)用題有兩點(diǎn):(1)是一道工程問題應(yīng)用題,它的問題是甲乙兩個(gè)施工隊(duì)哪一個(gè)隊(duì)的施工速度快?這與過去直接問甲隊(duì)單獨(dú)干多少天完成或乙隊(duì)單獨(dú)干多少天完成有所不同,需要學(xué)生根據(jù)題意,尋找未知數(shù),然后根據(jù)題意找出問題中的等量關(guān)系列方程.求得方程的解除了要檢
28、驗(yàn)外,還要比較甲乙兩個(gè)施工隊(duì)哪一個(gè)隊(duì)的施工速度快,才能完成解題的全過程(2)教材的分析是填空的形式,為學(xué)生分析題意、設(shè)未知數(shù)搭好了平臺(tái),有助于學(xué)生找出題目中等量關(guān)系,列出方程.P36例4是一道行程問題的應(yīng)用題也與舊教材的這類題有所不同(1)本題中涉及到的列車平均提速v千米/時(shí),提速前行駛的路程為s千米, 完成. 用字母表示已知數(shù)(量)在過去的例題里并不多見,題目的難度也增加了;(2)例題中的分析用填空的形式提示學(xué)生用已知量v、s和未知數(shù)x,表示提速前列車行駛s千米所用的時(shí)間,提速后列車的平均速度設(shè)為未知數(shù)x千米/時(shí),以及提速后列車行駛(x+50)千米所用的時(shí)間.這兩道例題都設(shè)置了帶有探究性的分
29、析,應(yīng)注意鼓勵(lì)學(xué)生積極探究,當(dāng)學(xué)生在探究過程中遇到困難時(shí),教師應(yīng)啟發(fā)誘導(dǎo),讓學(xué)生經(jīng)過自己的努力,在克服困難后體會(huì)如何探究,教師不要替代他們思考,不要過早給出答案.教材中為學(xué)生自己動(dòng)手、動(dòng)腦解題搭建了一些提示的平臺(tái),給了設(shè)未知數(shù)、解題思路和解題格式,但教學(xué)目標(biāo)要求學(xué)生還是要獨(dú)立地分析、解決實(shí)際問題,所以教師還要給學(xué)生一些問題,讓學(xué)生發(fā)揮他們的才能,找到解題的思路,能夠獨(dú)立地完成任務(wù).特別是題目中的數(shù)量關(guān)系清晰,教師就放手讓學(xué)生做,以提高學(xué)生分析問解決問題的能力.四、例題講解P35例3分析:本題是一道工程問題應(yīng)用題,基本關(guān)系是:工作量=工作效率工作時(shí)間.這題沒有具體的工作量,工作量虛擬為1,工作的
30、時(shí)間單位為“月”.等量關(guān)系是:甲隊(duì)單獨(dú)做的工作量+兩隊(duì)共同做的工作量=1P36例4分析:是一道行程問題的應(yīng)用題, 基本關(guān)系是:速度=.這題用字母表示已知數(shù)(量).等量關(guān)系是:提速前所用的時(shí)間=提速后所用的時(shí)間五、隨堂練習(xí)1. 學(xué)校要舉行跳繩比賽,同學(xué)們都積極練習(xí).甲同學(xué)跳180個(gè)所用的時(shí)間,乙同學(xué)可以跳240個(gè);又已知甲每分鐘比乙少跳5個(gè),求每人每分鐘各跳多少個(gè).2. 一項(xiàng)工程要在限期內(nèi)完成.如果第一組單獨(dú)做,恰好按規(guī)定日期完成;如果第二組單獨(dú)做,需要超過規(guī)定日期4天才能完成,如果兩組合作3天后,剩下的工程由第二組單獨(dú)做,正好在規(guī)定日期內(nèi)完成,問規(guī)定日期是多少天?3. 甲、乙兩地相距19千米,
31、某人從甲地去乙地,先步行7千米,然后改騎自行車,共用了2小時(shí)到達(dá)乙地,已知這個(gè)人騎自行車的速度是步行速度的4倍,求步行的速度和騎自行車的速度.六、課后練習(xí)1某學(xué)校學(xué)生進(jìn)行急行軍訓(xùn)練,預(yù)計(jì)行60千米的路程在下午5時(shí)到達(dá),后來由于把速度加快 ,結(jié)果于下午4時(shí)到達(dá),求原計(jì)劃行軍的速度。2甲、乙兩個(gè)工程隊(duì)共同完成一項(xiàng)工程,乙隊(duì)先單獨(dú)做1天后,再由兩隊(duì)合作2天就完成了全部工程,已知甲隊(duì)單獨(dú)完成工程所需的天數(shù)是乙隊(duì)單獨(dú)完成所需天數(shù)的,求甲、乙兩隊(duì)單獨(dú)完成各需多少天?3甲容器中有15%的鹽水30升,乙容器中有18%的鹽水20升,如果向兩個(gè)容器個(gè)加入等量水,使它們的濃度相等,那么加入的水是多第十七章 反比例函
32、數(shù)1711反比例函數(shù)的意義一、教學(xué)目標(biāo)1使學(xué)生理解并掌握反比例函數(shù)的概念2能判斷一個(gè)給定的函數(shù)是否為反比例函數(shù),并會(huì)用待定系數(shù)法求函數(shù)解析式3能根據(jù)實(shí)際問題中的條件確定反比例函數(shù)的解析式,體會(huì)函數(shù)的模型思想二、重、難點(diǎn)1重點(diǎn):理解反比例函數(shù)的概念,能根據(jù)已知條件寫出函數(shù)解析式2難點(diǎn):理解反比例函數(shù)的概念三、例題的意圖分析教材第39頁的思考題是為引入反比例函數(shù)的概念而設(shè)置的,目的是讓學(xué)生從實(shí)際問題出發(fā),探索其中的數(shù)量關(guān)系和變化規(guī)律,通過觀察、討論、歸納,最后得出反比例函數(shù)的概念,體會(huì)函數(shù)的模型思想。教材第40頁的例1是一道用待定系數(shù)法求反比例函數(shù)解析式的題,此題的目的一是要加深學(xué)生對(duì)反比例函數(shù)概
33、念的理解,掌握求函數(shù)解析式的方法;二是讓學(xué)生進(jìn)一步體會(huì)函數(shù)所蘊(yùn)含的“變化與對(duì)應(yīng)”的思想,特別是函數(shù)與自變量之間的單值對(duì)應(yīng)關(guān)系。補(bǔ)充例1、例2都是常見的題型,能幫助學(xué)生更好地理解反比例函數(shù)的概念。補(bǔ)充例3是一道綜合題,此題是用待定系數(shù)法確定由兩個(gè)函數(shù)組合而成的新的函數(shù)關(guān)系式,有一定難度,但能提高學(xué)生分析、解決問題的能力。四、課堂引入1回憶一下什么是正比例函數(shù)、一次函數(shù)?它們的一般形式是怎樣的?2體育課上,老師測(cè)試了百米賽跑,那么,時(shí)間與平均速度的關(guān)系是怎樣的?五、例習(xí)題分析例1見教材P40分析:因?yàn)閥是x的反比例函數(shù),所以先設(shè),再把x2和y6代入上式求出常數(shù)k,即利用了待定系數(shù)法確定函數(shù)解析式。
34、例1(補(bǔ)充)下列等式中,哪些是反比例函數(shù)(1) (2) (3)xy21 (4) (5)(6) (7)yx4分析:根據(jù)反比例函數(shù)的定義,關(guān)鍵看上面各式能否改寫成(k為常數(shù),k0)的形式,這里(1)、(7)是整式,(4)的分母不是只單獨(dú)含x,(6)改寫后是,分子不是常數(shù),只有(2)、(3)、(5)能寫成定義的形式例2(補(bǔ)充)當(dāng)m取什么值時(shí),函數(shù)是反比例函數(shù)?分析:反比例函數(shù)(k0)的另一種表達(dá)式是(k0),后一種寫法中x的次數(shù)是1,因此m的取值必須滿足兩個(gè)條件,即m20且3m21,特別注意不要遺漏k0這一條件,也要防止出現(xiàn)3m21的錯(cuò)誤。解得m2例3(補(bǔ)充)已知函數(shù)yy1y2,y1與x成正比例,y
35、2與x成反比例,且當(dāng)x1時(shí),y4;當(dāng)x2時(shí),y5求y與x的函數(shù)關(guān)系式當(dāng)x2時(shí),求函數(shù)y的值分析:此題函數(shù)y是由y1和y2兩個(gè)函數(shù)組成的,要用待定系數(shù)法來解答,先根據(jù)題意分別設(shè)出y1、 y2與x的函數(shù)關(guān)系式,再代入數(shù)值,通過解方程或方程組求出比例系數(shù)的值。這里要注意y1與x和y2與x的函數(shù)關(guān)系中的比例系數(shù)不一定相同,故不能都設(shè)為k,要用不同的字母表示。略解:設(shè)y1k1x(k10),(k20),則,代入數(shù)值求得k12,k22,則,當(dāng)x2時(shí),y5六、隨堂練習(xí)1蘋果每千克x元,花10元錢可買y千克的蘋果,則y與x之間的函數(shù)關(guān)系式為 2若函數(shù)是反比例函數(shù),則m的取值是 3矩形的面積為4,一條邊的長(zhǎng)為x,
36、另一條邊的長(zhǎng)為y,則y與x的函數(shù)解析式為 4已知y與x成反比例,且當(dāng)x2時(shí),y3,則y與x之間的函數(shù)關(guān)系式是 ,當(dāng)x3時(shí),y 5函數(shù)中自變量x的取值范圍是 七、課后練習(xí)已知函數(shù)yy1y2,y1與x1成正比例,y2與x成反比例,且當(dāng)x1時(shí),y0;當(dāng)x4時(shí),y9,求當(dāng)x1時(shí)y的值1712反比例函數(shù)的圖象和性質(zhì)(1)一、教學(xué)目標(biāo)1會(huì)用描點(diǎn)法畫反比例函數(shù)的圖象2結(jié)合圖象分析并掌握反比例函數(shù)的性質(zhì)3體會(huì)函數(shù)的三種表示方法,領(lǐng)會(huì)數(shù)形結(jié)合的思想方法二、重點(diǎn)、難點(diǎn)1重點(diǎn):理解并掌握反比例函數(shù)的圖象和性質(zhì)2難點(diǎn):正確畫出圖象,通過觀察、分析,歸納出反比例函數(shù)的性質(zhì)三、例題的意圖分析教材第41頁的例2是讓學(xué)生經(jīng)歷
37、用描點(diǎn)法畫反比例函數(shù)圖象的過程,一方面能進(jìn)一步熟悉作函數(shù)圖象的方法,提高基本技能;另一方面可以加深學(xué)生對(duì)反比例函數(shù)圖象的認(rèn)識(shí),了解函數(shù)的變化規(guī)律,從而為探究函數(shù)的性質(zhì)作準(zhǔn)備。補(bǔ)充例1的目的一是復(fù)習(xí)鞏固反比例函數(shù)的定義,二是通過對(duì)反比例函數(shù)性質(zhì)的簡(jiǎn)單應(yīng)用,使學(xué)生進(jìn)一步理解反比例函數(shù)的圖象特征及性質(zhì)。補(bǔ)充例2是一道典型題,是關(guān)于反比例函數(shù)圖象與矩形面積的問題,要讓學(xué)生理解并掌握反比例函數(shù)解析式(k0)中的幾何意義。四、課堂引入提出問題:1一次函數(shù)ykxb(k、b是常數(shù),k0)的圖象是什么?其性質(zhì)有哪些?正比例函數(shù)ykx(k0)呢?2畫函數(shù)圖象的方法是什么?其一般步驟有哪些?應(yīng)注意什么?3反比例函數(shù)
38、的圖象是什么樣呢?五、例習(xí)題分析例2見教材P4,用描點(diǎn)法畫圖,注意強(qiáng)調(diào):(1)列表取值時(shí),x0,因?yàn)閤0函數(shù)無意義,為了使描出的點(diǎn)具有代表性,可以“0”為中心,向兩邊對(duì)稱式取值,即正、負(fù)數(shù)各一半,且互為相反數(shù),這樣也便于求y值(2)由于函數(shù)圖象的特征還不清楚,所以要盡量多取一些數(shù)值,多描一些點(diǎn),這樣便于連線,使畫出的圖象更精確(3)連線時(shí)要用平滑的曲線按照自變量從小到大的順序連接,切忌畫成折線(4)由于x0,k0,所以y0,函數(shù)圖象永遠(yuǎn)不會(huì)與x軸、y軸相交,只是無限靠近兩坐標(biāo)軸例1(補(bǔ)充)已知反比例函數(shù)的圖象在第二、四象限,求m值,并指出在每個(gè)象限內(nèi)y隨x的變化情況?分析:此題要考慮兩個(gè)方面,
39、一是反比例函數(shù)的定義,即(k0)自變量x的指數(shù)是1,二是根據(jù)反比例函數(shù)的性質(zhì):當(dāng)圖象位于第二、四象限時(shí),k0,則m10,不要忽視這個(gè)條件略解:是反比例函數(shù) m231,且m10 又圖象在第二、四象限 m10解得且m1 則例2(補(bǔ)充)如圖,過反比例函數(shù)(x0)的圖象上任意兩點(diǎn)A、B分別作x軸的垂線,垂足分別為C、D,連接OA、OB,設(shè)AOC和BOD的面積分別是S1、S2,比較它們的大小,可得( )(A)S1S2 (B)S1S2 (C)S1S2 (D)大小關(guān)系不能確定分析:從反比例函數(shù)(k0)的圖象上任一點(diǎn)P(x,y)向x軸、y軸作垂線段,與x軸、y軸所圍成的矩形面積,由此可得S1S2 ,故選B六、
40、隨堂練習(xí)1已知反比例函數(shù),分別根據(jù)下列條件求出字母k的取值范圍(1)函數(shù)圖象位于第一、三象限(2)在第二象限內(nèi),y隨x的增大而增大2函數(shù)yaxa與(a0)在同一坐標(biāo)系中的圖象可能是( ) 3在平面直角坐標(biāo)系內(nèi),過反比例函數(shù)(k0)的圖象上的一點(diǎn)分別作x軸、y軸的垂線段,與x軸、y軸所圍成的矩形面積是6,則函數(shù)解析式為 七、課后練習(xí)1若函數(shù)與的圖象交于第一、三象限,則m的取值范圍是 2反比例函數(shù),當(dāng)x2時(shí),y ;當(dāng)x2時(shí);y的取值范圍是 ; 當(dāng)x2時(shí);y的取值范圍是 已知反比例函數(shù),當(dāng)時(shí),y隨x的增大而增大,求函數(shù)關(guān)系式 1712反比例函數(shù)的圖象和性質(zhì)(2)一、教學(xué)目標(biāo)1使學(xué)生進(jìn)一步理解和掌握反
41、比例函數(shù)及其圖象與性質(zhì)2能靈活運(yùn)用函數(shù)圖象和性質(zhì)解決一些較綜合的問題3深刻領(lǐng)會(huì)函數(shù)解析式與函數(shù)圖象之間的聯(lián)系,體會(huì)數(shù)形結(jié)合及轉(zhuǎn)化的思想方法二、重點(diǎn)、難點(diǎn)1重點(diǎn):理解并掌握反比例函數(shù)的圖象和性質(zhì),并能利用它們解決一些綜合問題2難點(diǎn):學(xué)會(huì)從圖象上分析、解決問題三、例題的意圖分析教材第44頁的例3一是讓學(xué)生理解點(diǎn)在圖象上的含義,掌握如何用待定系數(shù)法去求解析式,復(fù)習(xí)鞏固反比例函數(shù)的意義;二是通過函數(shù)解析式去分析圖象及性質(zhì),由“數(shù)”到“形”,體會(huì)數(shù)形結(jié)合思想,加深學(xué)生對(duì)反比例函數(shù)圖象和性質(zhì)的理解。教材第44頁的例4是已知函數(shù)圖象求解析式中的未知系數(shù),并由雙曲線的變化趨勢(shì)分析函數(shù)值y隨x的變化情況,此過程
42、是由“形”到“數(shù)”,目的是為了提高學(xué)生從函數(shù)圖象中獲取信息的能力,加深對(duì)函數(shù)圖象及性質(zhì)的理解。補(bǔ)充例1目的是引導(dǎo)學(xué)生在解有關(guān)函數(shù)問題時(shí),要數(shù)形結(jié)合,另外,在分析反比例函數(shù)的增減性時(shí),一定要注意強(qiáng)調(diào)在哪個(gè)象限內(nèi)。補(bǔ)充例2是一道有關(guān)一次函數(shù)和反比例函數(shù)的綜合題,目的是提高學(xué)生的識(shí)圖能力,并能靈活運(yùn)用所學(xué)知識(shí)解決一些較綜合的問題。四、課堂引入復(fù)習(xí)上節(jié)課所學(xué)的內(nèi)容1什么是反比例函數(shù)?2反比例函數(shù)的圖象是什么?有什么性質(zhì)?五、例習(xí)題分析例3見教材P44分析:反比例函數(shù)的圖象位置及y隨x的變化情況取決于常數(shù)k的符號(hào),因此要先求常數(shù)k,而題中已知圖象經(jīng)過點(diǎn)A(2,6),即表明把A點(diǎn)坐標(biāo)代入解析式成立,所以用
43、待定系數(shù)法能求出k,這樣解析式也就確定了。例4見教材P44 例1(補(bǔ)充)若點(diǎn)A(2,a)、B(1,b)、C(3,c)在反比例函數(shù)(k0)圖象上,則a、b、c的大小關(guān)系怎樣?分析:由k0可知,雙曲線位于第二、四象限,且在每一象限內(nèi),y隨x的增大而增大,因?yàn)锳、B在第二象限,且12,故ba0;又C在第四象限,則c0,所以ba0c說明:由于雙曲線的兩個(gè)分支在兩個(gè)不同的象限內(nèi),因此函數(shù)y隨x的增減性就不能連續(xù)的看,一定要強(qiáng)調(diào)“在每一象限內(nèi)”,否則,籠統(tǒng)說k0時(shí)y隨x的增大而增大,就會(huì)誤認(rèn)為3最大,則c最大,出現(xiàn)錯(cuò)誤。此題還可以畫草圖,比較a、b、c的大小,利用圖象直觀易懂,不易出錯(cuò),應(yīng)學(xué)會(huì)使用。例2
44、(補(bǔ)充)如圖, 一次函數(shù)ykxb的圖象與反比例函數(shù)的圖象交于A(2,1)、B(1,n)兩點(diǎn)(1)求反比例函數(shù)和一次函數(shù)的解析式(2)根據(jù)圖象寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍分析:因?yàn)锳點(diǎn)在反比例函數(shù)的圖象上,可先求出反比例函數(shù)的解析式,又B點(diǎn)在反比例函數(shù)的圖象上,代入即可求出n的值,最后再由A、B兩點(diǎn)坐標(biāo)求出一次函數(shù)解析式y(tǒng)x1,第(2)問根據(jù)圖象可得x的取值范圍x2或0 x1,這是因?yàn)楸容^兩個(gè)不同函數(shù)的值的大小時(shí),就是看這兩個(gè)函數(shù)圖象哪個(gè)在上方,哪個(gè)在下方。六、隨堂練習(xí)1若直線ykxb經(jīng)過第一、二、四象限,則函數(shù)的圖象在( )(A)第一、三象限 (B)第二、四象限 (C)第三
45、、四象限 (D)第一、二象限2已知點(diǎn)(1,y1)、(2,y2)、(,y3)在雙曲線上,則下列關(guān)系式正確的是( )(A)y1y2y3 (B)y1y3y2 (C)y2y1y3 (D)y3y1y2七、課后練習(xí)1已知反比例函數(shù)的圖象在每個(gè)象限內(nèi)函數(shù)值y隨自變量x的增大而減小,且k的值還滿足2k1,若k為整數(shù),求反比例函數(shù)的解析式2已知一次函數(shù)的圖像與反比例函數(shù)的圖像交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是2 , 求(1)一次函數(shù)的解析式; (2)AOB的面積 172實(shí)際問題與反比例函數(shù)(1)一、教學(xué)目標(biāo)1利用反比例函數(shù)的知識(shí)分析、解決實(shí)際問題2滲透數(shù)形結(jié)合思想,提高學(xué)生用函數(shù)觀點(diǎn)解決問題的能力
46、二、重點(diǎn)、難點(diǎn)1重點(diǎn):利用反比例函數(shù)的知識(shí)分析、解決實(shí)際問題2難點(diǎn):分析實(shí)際問題中的數(shù)量關(guān)系,正確寫出函數(shù)解析式三、例題的意圖分析教材第50頁的例1,數(shù)量關(guān)系比較簡(jiǎn)單,學(xué)生根據(jù)基本公式很容易寫出函數(shù)關(guān)系式,此題實(shí)際上是利用了反比例函數(shù)的定義,同時(shí)也是要讓學(xué)生學(xué)會(huì)分析問題的方法。教材第51頁的例2是一道利用反比例函數(shù)的定義和性質(zhì)來解決的實(shí)際問題,此題的實(shí)際背景較例1稍復(fù)雜些,目的是為了提高學(xué)生將實(shí)際問題抽象成數(shù)學(xué)問題的能力,掌握用函數(shù)觀點(diǎn)去分析和解決問題的思路。補(bǔ)充例題一是為了鞏固反比例函數(shù)的有關(guān)知識(shí),二是為了提高學(xué)生從圖象中讀取信息的能力,掌握數(shù)形結(jié)合的思想方法,以便更好地解決實(shí)際問題四、課堂
47、引入寒假到了,小明正與幾個(gè)同伴在結(jié)冰的河面上溜冰,突然發(fā)現(xiàn)前面有一處冰出現(xiàn)了裂痕,小明立即告訴同伴分散趴在冰面上,匍匐離開了危險(xiǎn)區(qū)。你能解釋一下小明這樣做的道理嗎?五、例習(xí)題分析例1見教材第50頁分析:(1)問首先要弄清此題中各數(shù)量間的關(guān)系,容積為104,底面積是S,深度為d,滿足基本公式:圓柱的體積 底面積高,由題意知S是函數(shù),d是自變量,改寫后所得的函數(shù)關(guān)系式是反比例函數(shù)的形式,(2)問實(shí)際上是已知函數(shù)S的值,求自變量d的取值,(3)問則是與(2)相反例2見教材第51頁分析:此題類似應(yīng)用題中的“工程問題”,關(guān)系式為工作總量工作速度工作時(shí)間,由于題目中貨物總量是不變的,兩個(gè)變量分別是速度v和
48、時(shí)間t,因此具有反比關(guān)系,(2)問涉及了反比例函數(shù)的增減性,即當(dāng)自變量t取最大值時(shí),函數(shù)值v取最小值是多少?例1(補(bǔ)充)某氣球內(nèi)充滿了一定質(zhì)量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的氣壓P(千帕)是氣體體積V(立方米)的反比例函數(shù),其圖像如圖所示(千帕是一種壓強(qiáng)單位)(1)寫出這個(gè)函數(shù)的解析式;(2)當(dāng)氣球的體積是0.8立方米時(shí),氣球內(nèi)的氣壓是多少千帕?(3)當(dāng)氣球內(nèi)的氣壓大于144千帕?xí)r,氣球?qū)⒈?,為了安全起見,氣球的體積應(yīng)不小于多少立方米?分析:題中已知變量P與V是反比例函數(shù)關(guān)系,并且圖象經(jīng)過點(diǎn)A,利用待定系數(shù)法可以求出P與V的解析式,得,(3)問中當(dāng)P大于144千帕?xí)r,氣球會(huì)爆炸,即當(dāng)P不超
49、過144千帕?xí)r,是安全范圍。根據(jù)反比例函數(shù)的圖象和性質(zhì),P隨V的增大而減小,可先求出氣壓P144千帕?xí)r所對(duì)應(yīng)的氣體體積,再分析出最后結(jié)果是不小于立方米六、隨堂練習(xí)1京沈高速公路全長(zhǎng)658km,汽車沿京沈高速公路從沈陽駛往北京,則汽車行完全程所需時(shí)間t(h)與行駛的平均速度v(km/h)之間的函數(shù)關(guān)系式為 2完成某項(xiàng)任務(wù)可獲得500元報(bào)酬,考慮由x人完成這項(xiàng)任務(wù),試寫出人均報(bào)酬y(元)與人數(shù)x(人)之間的函數(shù)關(guān)系式 3一定質(zhì)量的氧氣,它的密度(kg/m3)是它的體積V(m3)的反比例函數(shù),當(dāng)V10時(shí),1.43,(1)求與V的函數(shù)關(guān)系式;(2)求當(dāng)V2時(shí)氧氣的密度 七、課后練習(xí)1小林家離工作單位的
50、距離為3600米,他每天騎自行車上班時(shí)的速度為v(米/分),所需時(shí)間為t(分)(1)則速度v與時(shí)間t之間有怎樣的函數(shù)關(guān)系?(2)若小林到單位用15分鐘,那么他騎車的平均速度是多少?(2)如果小林騎車的速度最快為300米/分,那他至少需要幾分鐘到 172實(shí)際問題與反比例函數(shù)(2)一、教學(xué)目標(biāo)1利用反比例函數(shù)的知識(shí)分析、解決實(shí)際問題2滲透數(shù)形結(jié)合思想,進(jìn)一步提高學(xué)生用函數(shù)觀點(diǎn)解決問題的能力,體會(huì)和認(rèn)識(shí)反比例函數(shù)這一數(shù)學(xué)模型二、重點(diǎn)、難點(diǎn)1重點(diǎn):利用反比例函數(shù)的知識(shí)分析、解決實(shí)際問題2難點(diǎn):分析實(shí)際問題中的數(shù)量關(guān)系,正確寫出函數(shù)解析式,解決實(shí)際問題三、例題的意圖分析教材第52頁的例3和例4都需要用到
51、物理知識(shí),教材在例題前已給出了相關(guān)的基本公式,其中的數(shù)量關(guān)系具有反比例關(guān)系,通過對(duì)這兩個(gè)問題的分析和解決,不但能復(fù)習(xí)鞏固反比例函數(shù)的有關(guān)知識(shí),還能培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)補(bǔ)充例題是一道綜合題,有一定難度,需要學(xué)生有較強(qiáng)的識(shí)圖、分析和歸納等方面的能力,此題既有一次函數(shù)的知識(shí),又有反比例函數(shù)的知識(shí),能進(jìn)一步深化學(xué)生對(duì)一次函數(shù)和反比例函數(shù)知識(shí)的理解和掌握,體會(huì)數(shù)形結(jié)合思想的重要作用,同時(shí)提高學(xué)生靈活運(yùn)用函數(shù)觀點(diǎn)去分析和解決實(shí)際問題的能力四、課堂引入1小明家新買了幾桶墻面漆,準(zhǔn)備重新粉刷墻壁,請(qǐng)問如何打開這些未開封的墻面漆桶呢?其原理是什么?2臺(tái)燈的亮度、電風(fēng)扇的轉(zhuǎn)速都可以調(diào)節(jié),你能說出其中的道理嗎?五
52、、例習(xí)題分析例3見教材第52頁分析:題中已知阻力與阻力臂不變,即阻力與阻力臂的積為定值,由“杠桿定律”知變量動(dòng)力與動(dòng)力臂成反比關(guān)系,寫出函數(shù)關(guān)系式,得到函數(shù)動(dòng)力F是自變量動(dòng)力臂的反比例函數(shù),當(dāng)1.5時(shí),代入解析式中求F的值;(2)問要利用反比例函數(shù)的性質(zhì),越大F越小,先求出當(dāng)F200時(shí),其相應(yīng)的值的大小,從而得出結(jié)果。例4見教材第53頁分析:根據(jù)物理公式PRU2,當(dāng)電壓U一定時(shí),輸出功率P是電阻R的反比例函數(shù),則,(2)問中是已知自變量R的取值范圍,即110R220,求函數(shù)P的取值范圍,根據(jù)反比例函數(shù)的性質(zhì),電阻越大則功率越小,得220P440例1(補(bǔ)充)為了預(yù)防疾病,某單位對(duì)辦公室采用藥熏消
53、毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如圖),現(xiàn)測(cè)得藥物8分鐘燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量6毫克,請(qǐng)根據(jù)題中所提供的信息,解答下列問題:(1)藥物燃燒時(shí),y關(guān)于x的函數(shù)關(guān)系式為 ,自變量x的取值范為 ;藥物燃燒后,y關(guān)于x的函數(shù)關(guān)系式為 .(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時(shí)員工方可進(jìn)辦公室,那么從消毒開始,至少需要經(jīng)過_分鐘后,員工才能回到辦公室;(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時(shí)間不低于10分鐘時(shí),才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?
54、分析:(1)藥物燃燒時(shí),由圖象可知函數(shù)y是x的正比例函數(shù),設(shè),將點(diǎn)(8,6)代人解析式,求得,自變量0 x8;藥物燃燒后,由圖象看出y是x的反比例函數(shù),設(shè),用待定系數(shù)法求得(2)燃燒時(shí),藥含量逐漸增加,燃燒后,藥含量逐漸減少,因此,只能在燃燒后的某一時(shí)間進(jìn)入辦公室,先將藥含量y1.6代入,求出x30,根據(jù)反比例函數(shù)的圖象與性質(zhì)知藥含量y隨時(shí)間x的增大而減小,求得時(shí)間至少要30分鐘(3)藥物燃燒過程中,藥含量逐漸增加,當(dāng)y3時(shí),代入中,得x4,即當(dāng)藥物燃燒4分鐘時(shí),藥含量達(dá)到3毫克;藥物燃燒后,藥含量由最高6毫克逐漸減少,其間還能達(dá)到3毫克,所以當(dāng)y3時(shí),代入,得x16,持續(xù)時(shí)間為1641210
55、,因此消毒有效六、隨堂練習(xí)1某廠現(xiàn)有800噸煤,這些煤能燒的天數(shù)y與平均每天燒的噸數(shù)x之間的函數(shù)關(guān)系是( )(A)(x0) (B)(x0)(C)y300 x(x0) (D)y300 x(x0)2已知甲、乙兩地相s(千米),汽車從甲地勻速行駛到達(dá)乙地,如果汽車每小時(shí)耗油量為a(升),那么從甲地到乙地汽車的總耗油量y(升)與汽車的行駛速度v(千米/時(shí))的函數(shù)圖象大致是( ) 3你吃過拉面嗎?實(shí)際上在做拉面的過程中就滲透著數(shù)學(xué)知識(shí),一定體積的面團(tuán)做成拉面,面條的總長(zhǎng)度y(m)是面條的粗細(xì)(橫截面積)S(mm2)的反比例函數(shù),其圖象如圖所示:(1)寫出y與S的函數(shù)關(guān)系式;(2)求當(dāng)面條粗1.6mm2時(shí)
56、,面條的總長(zhǎng)度是多少米?七課后練習(xí)一場(chǎng)暴雨過后,一洼地存雨水20米3,如果將雨水全部排完需t分鐘,排水量為a米3/分,且排水時(shí)間為510分鐘(1)試寫出t與a的函數(shù)關(guān)系式,并指出a的取值范圍;(2)請(qǐng)畫出函數(shù)圖象(3)根據(jù)圖象回答:當(dāng)排水量為3米3/分時(shí),排水的時(shí)間需要多長(zhǎng)?第十八章 勾股定理181 勾股定理(一)一、教學(xué)目標(biāo)1了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內(nèi)容,會(huì)用面積法證明勾股定理。2培養(yǎng)在實(shí)際生活中發(fā)現(xiàn)問題總結(jié)規(guī)律的意識(shí)和能力。3介紹我國(guó)古代在勾股定理研究方面所取得的成就,激發(fā)學(xué)生的愛國(guó)熱情,促其勤奮學(xué)習(xí)。二、重點(diǎn)、難點(diǎn)1重點(diǎn):勾股定理的內(nèi)容及證明。2難點(diǎn):勾股定理的證明。三、例
57、題的意圖分析例1(補(bǔ)充)通過對(duì)定理的證明,讓學(xué)生確信定理的正確性;通過拼圖,發(fā)散學(xué)生的思維,鍛煉學(xué)生的動(dòng)手實(shí)踐能力;這個(gè)古老的精彩的證法,出自我國(guó)古代無名數(shù)學(xué)家之手。激發(fā)學(xué)生的民族自豪感,和愛國(guó)情懷。例2使學(xué)生明確,圖形經(jīng)過割補(bǔ)拼接后,只要沒有重疊,沒有空隙,面積不會(huì)改變。進(jìn)一步讓學(xué)生確信勾股定理的正確性。四、課堂引入目前世界上許多科學(xué)家正在試圖尋找其他星球的“人”,為此向宇宙發(fā)出了許多信號(hào),如地球上人類的語言、音樂、各種圖形等。我國(guó)數(shù)學(xué)家華羅庚曾建議,發(fā)射一種反映勾股定理的圖形,如果宇宙人是“文明人”,那么他們一定會(huì)識(shí)別這種語言的。這個(gè)事實(shí)可以說明勾股定理的重大意義。尤其是在兩千年前,是非常
58、了不起的成就。讓學(xué)生畫一個(gè)直角邊為3cm和4cm的直角ABC,用刻度尺量出AB的長(zhǎng)。以上這個(gè)事實(shí)是我國(guó)古代3000多年前有一個(gè)叫商高的人發(fā)現(xiàn)的,他說:“把一根直尺折成直角,兩段連結(jié)得一直角三角形,勾廣三,股修四,弦隅五。”這句話意思是說一個(gè)直角三角形較短直角邊(勾)的長(zhǎng)是3,長(zhǎng)的直角邊(股)的長(zhǎng)是4,那么斜邊(弦)的長(zhǎng)是5。再畫一個(gè)兩直角邊為5和12的直角ABC,用刻度尺量AB的長(zhǎng)。你是否發(fā)現(xiàn)32+42與52的關(guān)系,52+122和132的關(guān)系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。對(duì)于任意的直角三角形也有這個(gè)性質(zhì)嗎?五、例習(xí)題分析例1(補(bǔ)充)已知:在ABC中,C=
59、90,A、B、C的對(duì)邊為a、b、c。求證:a2b2=c2。分析:讓學(xué)生準(zhǔn)備多個(gè)三角形模型,最好是有顏色的吹塑紙,讓學(xué)生拼擺不同的形狀,利用面積相等進(jìn)行證明。拼成如圖所示,其等量關(guān)系為:4S+S小正=S大正 4ab(ba)2=c2,化簡(jiǎn)可證。發(fā)揮學(xué)生的想象能力拼出不同的圖形,進(jìn)行證明。 勾股定理的證明方法,達(dá)300余種。這個(gè)古老的精彩的證法,出自我國(guó)古代無名數(shù)學(xué)家之手。激發(fā)學(xué)生的民族自豪感,和愛國(guó)情懷。例2已知:在ABC中,C=90,A、B、C的對(duì)邊為a、b、c。求證:a2b2=c2。分析:左右兩邊的正方形邊長(zhǎng)相等,則兩個(gè)正方形的面積相等。左邊S=4abc2右邊S=(a+b)2左邊和右邊面積相等
60、,即4abc2=(a+b)2化簡(jiǎn)可證。六、課堂練習(xí)1勾股定理的具體內(nèi)容是: 。2如圖,直角ABC的主要性質(zhì)是:C=90,(用幾何語言表示)兩銳角之間的關(guān)系: ;若D為斜邊中點(diǎn),則斜邊中線 ;若B=30,則B的對(duì)邊和斜邊: ;三邊之間的關(guān)系: 。3ABC的三邊a、b、c,若滿足b2= a2c2,則 =90; 若滿足b2c2a2,則B是 角; 若滿足b2c2a2,則B是 角。4根據(jù)如圖所示,利用面積法證明勾股定理。七、課后練習(xí)1已知在RtABC中,B=90,a、b、c是ABC的三邊,則c= 。(已知a、b,求c)a= 。(已知b、c,求a)b= 。(已知a、c,求b)2如下表,表中所給的每行的三個(gè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 44865-2024物聯(lián)網(wǎng)基于物聯(lián)網(wǎng)和傳感網(wǎng)技術(shù)的動(dòng)產(chǎn)監(jiān)管集成平臺(tái)系統(tǒng)要求
- 物流車行駛規(guī)范演練
- 配電裝置最小安全凈距
- 氣道腫物鑒別與治療
- 智能銀行解決方案
- 第五章 萬有引力定律宇宙航行 2025年高考物理基礎(chǔ)專項(xiàng)復(fù)習(xí)
- 2.3.1物質(zhì)的量 課件高一上學(xué)期化學(xué)人教版(2019)必修第一冊(cè)
- 公司七夕團(tuán)建活動(dòng)
- 初中中秋節(jié)教案
- 彩色世界教案反思
- 國(guó)開2024年秋《經(jīng)濟(jì)法學(xué)》計(jì)分作業(yè)1-4答案形考任務(wù)
- 知道網(wǎng)課智慧《設(shè)計(jì)創(chuàng)新思維》測(cè)試答案
- 生物入侵與生物安全智慧樹知到期末考試答案章節(jié)答案2024年浙江農(nóng)林大學(xué)
- 《公路工程集料試驗(yàn)規(guī)程》JTG-3432-2024考核試題及答案文檔
- 生涯發(fā)展報(bào)告 (修改)
- 新課標(biāo)視域下的小學(xué)數(shù)學(xué)大單元教學(xué)
- 實(shí)驗(yàn)室生物安全組織框架
- 道路工程人行道施工方案(完整版)
- 高、低壓設(shè)備講解知識(shí)
- 醫(yī)院工程水電安裝施工組織設(shè)計(jì)(word版)
- 8位硬件乘法器設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論