4.1空間圖形基本關系的認識_第1頁
4.1空間圖形基本關系的認識_第2頁
4.1空間圖形基本關系的認識_第3頁
4.1空間圖形基本關系的認識_第4頁
4.1空間圖形基本關系的認識_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、1 北師大版高中數(shù)學必修2第一章立體幾何初步空間圖形的基本關系與公理復習:公理1 如果一條直線上的兩點在一個平面內,那么這條直線在此平面內1、判斷直線是否在平面內的依據。應用:2、檢驗一個面是否是平面。推論1 過一條直線和直線外一點有且只有一個平面。公理2 過不在一條直線上的三點,有且只有一個平面 .A3、公理的推論這是確定平面的依據之一 推論2 過兩條相交直線有且只有一個平面。推論3 過兩條平行線有且只有一個平面 。公理3 如果兩個不重合平面有一個公共點,那么它們有且只有一條過該點的公共直線。應用:判斷多點是否共線 過一條直線和直線外的一點有且只有一個平即:一條直線和直線外的一點確定一個平面

2、。BAC 推論2過兩條相交直線有且只有一個平面即:兩條相交直線確定一個平面推論1推論3過兩條平行直線有且只有一個平面。即:兩平行直線確定一個平面CABCBA7證: (存在性)由公理3,經過不共線的三點A,B,C有一個平面 .BAC因為B、C在平面 內,所以根據公理1,直線l在平面 內,即 是經過直線l和點A的平面 。(唯一性)因為B、C在直線l上,所以任何經過l和點A的平面一定經過A,B,C . 于是根據公理3,經過不共線的三點A,B,C的平面只有一個所以經過l和點A的平面只有一個.推論1證明在l上任取兩點B、C,則A,B,C不共線;公理4 平行于同一條直線的兩直線互相平行 (空間平行線的傳遞

3、性)理解: (1)已知直線a、b、c,且ab,bc,則ac (2)空間平行直線具有傳遞性 (3)互相平行的直線表示空間里的一個確定的 方向9復習:相交直線:平行直線:共面直線異面直線:不同在任何一個平面內,沒有公共點 同一平面內,有且只有一個公共點; 同一平面內,沒有公共點; 空間中的直線與直線之間有幾種位置關系?它們各有什么特點?10思考4:為了表示異面直線a,b不共面的特點,作圖時,通常用一個或兩個平面襯托,如圖. baab11關于異面直線的定義,你認為下列哪個說法最合適? A. 平面內的一條直線和這平面外的一條直 線; B. 分別在不同平面內的兩條直線; C. 不在同一個平面內的兩條直線

4、; D. 不同在任何一個平面內的兩條直線. baab12知識探究:等角定理思考1:在平面上,如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小有什么關系? 13思考2: 如圖,四棱柱ABCD-ABCD 的底面是平行四邊形,ADC與ADC, ADC與BAD的兩邊分別對應平行,這兩組角的大小關系如何 ?BADCABDCBADCABDC14思考3:如圖,在空間中AB/ AB,AC/ AC,你能證明BAC與BAC 相等嗎? BCABCAEEDD15思考4:綜上分析我們可以得到什么定理? 定理 空間中如果兩個角的兩邊分別對應平行,那么這兩個角相等或互補. 思考5:上面的定理稱為等角定理,在等角

5、定理中,你能進一步指出兩個角相等的條件嗎? 角的方向相同或相反1兩個平面重合的條件是( )A有兩個公共點 B有無數(shù)個公共點C存在不共線的三個公共點 D有一條公共直線鞏固練習:2下列命題中,真命題是( )A空間不同三點確定一個平面B空間兩兩相交的三條直線確定一個平面C兩組對邊相等的四邊形是平行四邊形D和同一直線都相交的三條平行線在同一平面內c3空間有四個點,其中無三點共線,可確定 _ 個平面一個或四個D17 例1 如圖,空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點. (1) 求證:四邊形EFGH是平行四邊形. (2) 若AC=BD,那么四邊形EFGH是什么圖形?FGDAEBCH18 例2 如圖是一個正方體的表面展開圖,如果將它還原為正方體,那么AB,CD,EF,GH這四條線段所在直線是異面直線的有多少對? FAHGEDCBCDBAEFGH例2、正方體ABCDA1B1C1D1中,AC1平面A1BD=M,求作點M。 本題體現(xiàn)了轉化的思想,將在空間難以把握的線面交點轉化為同一平面內的線線交點,確定了交點的位置。 ADCBC1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論