![期望傳播算法及其推導(dǎo)_第1頁(yè)](http://file4.renrendoc.com/view/9fc6f491f8e02b20e9784e0718797191/9fc6f491f8e02b20e9784e07187971911.gif)
![期望傳播算法及其推導(dǎo)_第2頁(yè)](http://file4.renrendoc.com/view/9fc6f491f8e02b20e9784e0718797191/9fc6f491f8e02b20e9784e07187971912.gif)
![期望傳播算法及其推導(dǎo)_第3頁(yè)](http://file4.renrendoc.com/view/9fc6f491f8e02b20e9784e0718797191/9fc6f491f8e02b20e9784e07187971913.gif)
![期望傳播算法及其推導(dǎo)_第4頁(yè)](http://file4.renrendoc.com/view/9fc6f491f8e02b20e9784e0718797191/9fc6f491f8e02b20e9784e07187971914.gif)
![期望傳播算法及其推導(dǎo)_第5頁(yè)](http://file4.renrendoc.com/view/9fc6f491f8e02b20e9784e0718797191/9fc6f491f8e02b20e9784e07187971915.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、期望傳播算法及其推導(dǎo)個(gè)人博客:Notations:Diag(a):adiagonalmatrixwithabeingitsdiagonalelement.diag(A):avectorfromthediagonalelementoAf.ab:componentwisemultiply.a0b:componentwisedivide.RecapofVariationalInferenceAsmentionedin1,wehaveintroducedvariationalinferenceanditsapplicationinBayesianlinearregression.Inthisblog,
2、wefocusonavariationalinferenceperspectiveonexpectationpropagation.Insignalprocessingregime,theposteriordistributionisinterested.However,itisdifficulttoobtainowingtomanyhigh-dimensionintegral.Forexample,weconsiderlinearGaussianmodely=Hx+wItsposteriordistributiondenotedby(y|x)(x)p(x|y)=Jp(y|x)p(x)dxwh
3、erep(y|x)=pw(yHx).Unlessbothp(y|x)andp(x)areGaussian,wecantobtaintheclose-formofp(x|y)directly.Forthat,someapproximationsarenecessary.Tothidend,weuseq(x)toapproximatetheposteriordistributionandKL-divergencetomeasurethedifferencebetweenq(x)andp(x|y).Forsimplification,wegenerallyrestricttheformofq(x)f
4、romthedistributionfamilyS,i.e.,argminq(x)=g(x)GSDKL(P|q)Obviously,adistributionfamilywithexcellentpropertieswillgreatlyreducetheamountofcomputation.Fortunately,exponentialfamilyisoneofthat.ExponentialFamilyTheexponentialfamilyoverxparameteredbynisdefinedbyp(x;n)=h(x)g(n)exp(nTu(x)whereg(n)isnormaliz
5、ationconstant=1g(n)(/h(x)exp(nTu(x)dx)Takingthegradientofbothsideoftheabovew.r.t.n,wegetg(n)/h(x)exp(nTu(x)dx+g(n)/h(x)俗吩)U(x)dx=Rearrangingyields1一g(n)g(n)=g(n)/u(x)h(x)exp(nTu(x)dxfu(x)h(x)exp(nTu(x)dx=fh(x)exp(nTu(x)dx=Eu(x)UsingthefactSgg(n)=g(n)Vg(n),wehavelogg(n)=Eu(x)(*1)AVariationalInference
6、PerspectiveonEPForthedistributionofq(x)invariationalinference,Wetakeexponentialfamilydistributionintoaccountq(x)=h(x)g(n)exp(nTu(x)wethenwriteDKl(pIIq)asDKL(p|q)=logg(n)-nTEP(x)u(x)+constTakingthegradientofthebothsideofabovew.r.t.ntozeroyieldslogg(n)=Ep(x)u(x)Asmentionedin(*1),wethengetEq(x)u(x)=Ep(
7、x)u(x)Notethatifq(x)isGaussianN(x|”,S),wethenminimizetheKL-divergencebysettingMequaltothemeanofp(x)and乞equaltothevarianceofp(x).Weexploitthisresulttoobtainapraticalalgorithmforapproximateinference.Formanyprobabilitymodels,thejointdistributionofdataD=y,yNandhiddenvariables(mayincludingparameters)comp
8、risesaproductoffactorsintheformnp(d,&)=ifi(e)wheref0(6)=p(e)and九(&)=P(yn|。),(n!=0).Theposteriordistributionisgivenbyp(d,e)1nP(e|D)=p(D)=p(D)ifi(e)wherep(D)ispartitionfunctionorevidencefunction.rnP(D)=/ifi(e)deAswedeterminetheformofq(x)inq(e)=Ziqi(e)Thenq(e)isupdatedbyminimizingqi(e)argmin1=qi(e)DKL(
9、p(D)ninifi(e)llziqi(e)Actually,theapproximationispoorsinceeachfactorisindividuallyapproximated.Toremedythissituation,expectationpropagationmakesamuchbetterapproximationbyoptimizingeachfactorinturninthecontextofalloftheremainingfactors2.Below,wehavegiventhedetaileddescriptionsofEPstep-by-step.Stepi:I
10、nitializeallfactorsqi(e)fromdistributionfamilyS.inq(e)=Ziqi(e)Step2:Computeqj(e)denotedbyq(e)qj(e)=Cqj(e)whereCisnormalizationconstant.Step3:Updateqnewp)=Dkl(Zjfj(e)qj(e)|q(e)whereqnew(e)istheupdateofq(0).Step4:Updateqj(6)qnew(e)%=cqjwhereCisanormalizationconstant.Step5:_、step2.ApplicationinCommunic
11、ationWeconsiderstandardlinearGaussianmodel(SLM)y=Hx+wwherexWCNgeneratedfromM-QAMconstellationwithdistributionp(x)=ni=1p(xi).PassingthechannelHeCMxN(estimatedperfeetbeforhand)andaddingthewhiteGaussiannoisewNc(w|0,2I),theobservedsignalyisthenobtained.Weaimatdesigninganhigh-efficientsignaldetectorusing
12、EP.Basedonaboveknowledge,wewritetheposteriordistributionofthismodelasp(y|x)p(x)p(x|y)=p(y)gp(y|x)p(x)Noticethatsinceyisgiven,thenp(y)isregardedasaconstant.Wefurtherassumetheeachobserveddataareindependentofothers,i.e.,nMp(y|x)=Q=1p(a|x)Step1:Initializeq(x),theapproximationofq(x).Sincep(y|x)isGaussian
13、,wethenapproximatep(x)byGaussian,oneofexponentialfamily.q(x)=Nc(x|m,Diag(v)Itsmarginaldistributionisq(xj=Nc(xilmi,vi).Notethatq(xjhereisq/。)mentionedinsection3.Step2:Calculatethejointdistributionq(x,y)q(x,y)=q(x)p(y|x)=Nc(x|m,Diag(v)Nc(y|Hx,b2I)aNc(x|m,Diag(v)Nc(x|(HH)-1Hy,(-2HH)-1)xNc(xM,s)wherethe
14、lastequaitoncanbeobtainedbyGaussianproductlemmamentionedin2,andfollowingequations乞=(b-1HHH+Diag(10v)-1M=S(a2HHy+Diag(m0v)Here,wefurtherexploitNc(xj(ijQjj)toapproximatep(xj,y).Thisoperationignoresthecorrelationofxjandxj,sowewriteitasq(叼,y)=”上叼仏,Ejj).Step3:Computeqj(叼)q(叼,y)M(叼bjQjj)qj(xj)=q(xj)=Nc(xj
15、|mj,vj)xNc(xj|mjem,vjem)temtemwhere(mj,vj)canbeobtainedbyGaussianproductlemmatemvj=11(%Vj)temmj=/Pjvt叫j-1mjvjStep4:Updateq(xi,y)byminimizingKL-divergenceargmin1qnew(xj,y)=q(Xj,y)Sdkl(Cp(xj)qj(xj)|q(xj,y)丿Thisstepcanbewrittenastemtemxj=xj|mj,vjtemtemvj=Varxj|mj,vjtemtemP(xj)Nc(xjmj,vj),wheretheexpect
16、ationistakenoverfp(叼)Nc(叼mtem,vm)dxj.ItmeansthatXjandVjisthemeanandvarianeeofC1p(xj)qj(xj),respectively.Withmomentmatch,thereisqnew(叼,y)=Nc(xj|Xj,Vj)Notethatthemarginalposteriordistributionisapproximatedbyp(xj|y)Cp(xj)qj(xj).Step5:Updateq(xj),wethenupdateq(xj)byUsingtheGaussianproductlemma,wegetqnew(xj,y)q(xj)x(qj(xj)vj=1tem-vj-1mj=vj(temmjtemxjVj-vjStep6:step2.Totally,Withabovedescription,wesummarytheEPalgorithmasfollowing乞=(b-1HHH+Diag(10v
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO 16834:2025 EN Welding consumables - Wire electrodes,wires,rods and deposits for gas shielded arc welding of high strength steels - Classification
- 2025年度建筑鋁模勞務(wù)分包合同勞務(wù)人員權(quán)益保障范本
- 2025年度新型過(guò)橋借款合同(金融創(chuàng)新版)
- 2025年度文化藝術(shù)品交易合作合同變更書(shū)
- 2025年度文化娛樂(lè)產(chǎn)業(yè)公司全部股權(quán)轉(zhuǎn)讓及IP開(kāi)發(fā)合同
- 2025年度建筑物拆除工程承包與綠色建筑重建合同
- 2025年度中小企業(yè)發(fā)展資金借款合同
- 益陽(yáng)2025年湖南益陽(yáng)師范高等??茖W(xué)校招聘9人筆試歷年參考題庫(kù)附帶答案詳解
- 海南2025年海南省港航管理局招聘事業(yè)編制人員3人筆試歷年參考題庫(kù)附帶答案詳解
- 江門(mén)2025年廣東江門(mén)臺(tái)山市公安局招聘警務(wù)輔助人員筆試歷年參考題庫(kù)附帶答案詳解
- -情景交際-中考英語(yǔ)復(fù)習(xí)考點(diǎn)
- 安全隱患報(bào)告和舉報(bào)獎(jiǎng)勵(lì)制度
- 地理標(biāo)志培訓(xùn)課件
- 2023行政主管年終工作報(bào)告五篇
- 印刷公司生產(chǎn)部2025年年度工作總結(jié)及2025年工作計(jì)劃
- GA/T 1003-2024銀行自助服務(wù)亭技術(shù)規(guī)范
- 公園衛(wèi)生保潔考核表
- 2024年居間完整協(xié)議書(shū)居間完整協(xié)議書(shū)
- 《化妝知識(shí)講座》課件
- 川教版四年級(jí)《生命.生態(tài).安全》下冊(cè)全冊(cè) 課件
- 體育-水平二-三年級(jí)籃球大單元教學(xué)計(jì)劃表及原地運(yùn)球教學(xué)設(shè)計(jì)、教案
評(píng)論
0/150
提交評(píng)論