版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1我國古代數(shù)學家秦九韶在數(shù)書九章中記述了“三斜求積術”,用現(xiàn)代式子表示即為:在中,角所對的邊分別為,則的面積.根據(jù)此
2、公式,若,且,則的面積為( )ABCD2下列幾何體的三視圖中,恰好有兩個視圖相同的幾何體是( )A正方體B球體C圓錐D長寬高互不相等的長方體3如圖,在中,點為線段上靠近點的三等分點,點為線段上靠近點的三等分點,則( )ABCD4已知向量滿足,且與的夾角為,則( )ABCD5已知二次函數(shù)的部分圖象如圖所示,則函數(shù)的零點所在區(qū)間為( )ABCD6函數(shù)(或)的圖象大致是( )ABCD7為得到函數(shù)的圖像,只需將函數(shù)的圖像( )A向右平移個長度單位B向右平移個長度單位C向左平移個長度單位D向左平移個長度單位8函數(shù)的大致圖像為( )ABCD9設復數(shù)滿足,則在復平面內(nèi)的對應點位于( )A第一象限B第二象限C
3、第三象限D第四象限10已知分別為雙曲線的左、右焦點,過的直線與雙曲線的左、右兩支分別交于兩點,若,則雙曲線的離心率為( )AB4C2D11執(zhí)行如圖所示的程序框圖,若輸出的結果為3,則可輸入的實數(shù)值的個數(shù)為( )A1B2C3D412已知向量,滿足,在上投影為,則的最小值為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13從分別寫有1,2,3,4的4張卡片中隨機抽取1張,放回后再隨機抽取1張,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為_.14設是公差不為0的等差數(shù)列的前項和,且,則_.15已知函數(shù),則曲線在點處的切線方程是_16已知在ABC中,(2sin32,2cos3
4、2),(cos77,cos13),則_,ABC的面積為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)如圖,是矩形,的頂點在邊上,點,分別是,上的動點(的長度滿足需求).設,且滿足.(1)求;(2)若,求的最大值.18(12分)在平面直角坐標系xOy中,曲線的參數(shù)方程為(,為參數(shù)),在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經(jīng)過極點的圓已知曲線上的點M對應的參數(shù),射線與曲線交于點(1)求曲線,的直角坐標方程;(2)若點A,B為曲線上的兩個點且,求的值19(12分)如圖,在四棱錐中,底面為菱形,底面,.(1)求證:平面;(2)若直線與平面所
5、成的角為,求平面與平面所成銳二面角的余弦值.20(12分)如圖,在直角梯形中,為的中點,沿將折起,使得點到點位置,且,為的中點,是上的動點(與點,不重合).()證明:平面平面垂直;()是否存在點,使得二面角的余弦值?若存在,確定點位置;若不存在,說明理由.21(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,直線極坐標方程為.若直線交曲線于,兩點,求線段的長.22(10分)如圖,平面四邊形為直角梯形,將繞著翻折到.(1)為上一點,且,當平面時,求實數(shù)的值;(2)當平面與平面所成的銳二面角大小為時,求與平面所成角的正弦.參考答案一、選擇題:本題
6、共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】根據(jù),利用正弦定理邊化為角得,整理為,根據(jù),得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因為,所以,由余弦定理,所以,由的面積公式得故選:A【點睛】本題主要考查正弦定理和余弦定理以及類比推理,還考查了運算求解的能力,屬于中檔題.2C【解析】根據(jù)基本幾何體的三視圖確定【詳解】正方體的三個三視圖都是相等的正方形,球的三個三視圖都是相等的圓,圓錐的三個三視圖有一個是圓,另外兩個是全等的等腰三角形,長寬高互不相等的長方體的三視圖是三個兩兩不全等的矩形故選:C【點睛】本題考查基本幾何體的三視
7、圖,掌握基本幾何體的三視圖是解題關鍵3B【解析】,將,代入化簡即可.【詳解】.故選:B.【點睛】本題考查平面向量基本定理的應用,涉及到向量的線性運算、數(shù)乘運算,考查學生的運算能力,是一道中檔題.4A【解析】根據(jù)向量的運算法則展開后利用數(shù)量積的性質(zhì)即可.【詳解】.故選:A.【點睛】本題主要考查數(shù)量積的運算,屬于基礎題.5B【解析】由函數(shù)f(x)的圖象可知,0f(0)a1,f(1)1ba0,所以1b2.又f(x)2xb,所以g(x)ex2xb,所以g(x)ex20,所以g(x)在R上單調(diào)遞增,又g(0)1b0,g(1)e2b0,根據(jù)函數(shù)的零點存在性定理可知,函數(shù)g(x)的零點所在的區(qū)間是(0,1)
8、,故選B.6A【解析】確定函數(shù)的奇偶性,排除兩個選項,再求時的函數(shù)值,再排除一個,得正確選項【詳解】分析知,函數(shù)(或)為偶函數(shù),所以圖象關于軸對稱,排除B,C,當時,排除D,故選:A【點睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,解題時可通過研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等,研究特殊的函數(shù)的值、函數(shù)值的正負,以及函數(shù)值的變化趨勢,排除錯誤選項,得正確結論7D【解析】,所以要的函數(shù)的圖象,只需將函數(shù)的圖象向左平移個長度單位得到,故選D8D【解析】通過取特殊值逐項排除即可得到正確結果.【詳解】函數(shù)的定義域為,當時,排除B和C;當時,排除A.故選:D.【點睛】本題考查圖象的判斷,取特殊值排除選項
9、是基本手段,屬中檔題.9C【解析】化簡得到,得到答案.【詳解】,故,對應點在第三象限.故選:.【點睛】本題考查了復數(shù)的化簡和對應象限,意在考查學生的計算能力.10A【解析】由已知得,由已知比值得,再利用雙曲線的定義可用表示出,用勾股定理得出的等式,從而得離心率【詳解】.又,可令,則.設,得,即,解得,,由得,該雙曲線的離心率.故選:A.【點睛】本題考查求雙曲線的離心率,解題關鍵是由向量數(shù)量積為0得出垂直關系,利用雙曲線的定義把雙曲線上的點到焦點的距離都用表示出來,從而再由勾股定理建立的關系11C【解析】試題分析:根據(jù)題意,當時,令,得;當時,令,得,故輸入的實數(shù)值的個數(shù)為1考點:程序框圖12B
10、【解析】根據(jù)在上投影為,以及,可得;再對所求模長進行平方運算,可將問題轉化為模長和夾角運算,代入即可求得.【詳解】在上投影為,即 又 本題正確選項:【點睛】本題考查向量模長的運算,對于含加減法運算的向量模長的求解,通常先求解模長的平方,再開平方求得結果;解題關鍵是需要通過夾角取值范圍的分析,得到的最小值.二、填空題:本題共4小題,每小題5分,共20分。13【解析】基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,由此能求出抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率【詳解】從分別寫有1,2,3,4的4張卡片中隨機抽取1張,放回后再隨機抽取1張,基本事件總數(shù)
11、,抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,分別為:,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為故答案為:【點睛】本題考查古典概型概率的求法,考查運算求解能力,求解時注意辨別概率的模型1418【解析】先由,可得,再結合等差數(shù)列的前項和公式求解即可.【詳解】解:因為,所以,.故答案為:18.【點睛】本題考查了等差數(shù)列基本量的運算,重點考查了等差數(shù)列的前項和公式,屬基礎題.15【解析】求導,x=0代入求k,點斜式求切線方程即可【詳解】則又故切線方程為y=x+1故答案為y=x+1【點睛】本題考查切線方程,求導法則及運算,考查直線方程,考查計算能力,是基礎題16
12、【解析】根據(jù)向量數(shù)量積的坐標表示結合兩角差的正弦公式的逆用即可得解;結合求出,根據(jù)面積公式即可得解.【詳解】2(sin32cos77cos32sin77),故答案為:【點睛】此題考查平面向量與三角函數(shù)解三角形綜合應用,涉及平面向量數(shù)量積的坐標表示,三角恒等變換,根據(jù)三角形面積公式求解三角形面積,綜合性強.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)(2)【解析】(1)利用正弦定理和余弦定理化簡,根據(jù)勾股定理逆定理求得.(2)設,由此求得的表達式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設,由,根據(jù)正弦定理和余弦定理得.化簡整理得.由勾股定理逆定理得.(2
13、)設,由(1)的結論知.在中,由,所以.在中,由,所以.所以,由,所以當,即時,取得最大值,且最大值為.【點睛】本小題考查正弦定理,余弦定理,勾股定理,解三角形,三角函數(shù)性質(zhì)及其三角恒等變換等基礎知識;考查運算求解能力,推理論證能力,化歸與轉換思想,應用意識.18(1)(2)【解析】(1)先求解a,b,消去參數(shù),即得曲線的直角坐標方程;再求解,利用極坐標和直角坐標的互化公式,即得曲線的直角坐標方程;(2)由于,可設,代入曲線直角坐標方程,可得的關系,轉化,可得解.【詳解】(1)將及對應的參數(shù),代入得,即,所以曲線的方程為,為參數(shù),所以曲線的直角坐標方程為設圓的半徑為R,由題意,圓的極坐標方程為
14、(或),將點代入,得,即,所以曲線的極坐標方程為,所以曲線的直角坐標方程為(2)由于,故可設,代入曲線直角坐標方程,可得,所以【點睛】本題考查了極坐標和直角坐標,參數(shù)方程和一般方程的互化以及極坐標的幾何意義的應用,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.19(1)證明見解析(2)【解析】(1)由底面為菱形,得,再由底面,可得,結合線面垂直的判定可得平面;(2)以點為坐標原點,以所在直線及過點且垂直于平面的直線分別為軸建立空間直角坐標系,分別求出平面與平面的一個法向量,由兩法向量所成角的余弦值可得平面與平面所成銳二面角的余弦值.【詳解】(1)證明:底面為菱形,底面,平面,又,平
15、面,平面;(2)解:,為等邊三角形,.底面,是直線與平面所成的角為,在中,由,解得.如圖,以點為坐標原點,以所在直線及過點且垂直于平面的直線分別為軸建立空間直角坐標系.則,.,.設平面與平面的一個法向量分別為,.由,取,得;由,取,得.平面與平面所成銳二面角的余弦值為.【點睛】本題考查直線與平面垂直的判定,考查空間想象能力與思維能力,訓練了利用空間向量求解空間角,屬于中檔題20()見解析 ()存在,此時為的中點.【解析】()證明平面,得到平面平面,故平面平面,平面,得到答案.()假設存在點滿足題意,過作于,平面,過作于,連接,則,過作于,連接,是二面角的平面角,設,計算得到答案.【詳解】(),
16、平面.又平面,平面平面,而平面,平面平面,由,知,可知平面,又平面,平面平面.()假設存在點滿足題意,過作于,由知,易證平面,所以平面,過作于,連接,則(三垂線定理),即是二面角的平面角,不妨設,則,在中,設(),由得,即,得,依題意知,即,解得,此時為的中點.綜上知,存在點,使得二面角的余弦值,此時為的中點.【點睛】本題考查了面面垂直,根據(jù)二面角確定點的位置,意在考查學生的空間想象能力和計算能力,也可以建立空間直角坐標系解得答案.21【解析】由,化簡得,由,所以直線的直角坐標方程為,因為曲線的參數(shù)方程為,整理得,直線的方程與曲線的方程聯(lián)立,整理得,設,則,根據(jù)弦長公式求解即可.【詳解】由,化簡得,又因為,所以直線的直角坐標方程為,因為曲線的參數(shù)方程為,消去,整理得,將直線的方程與曲線的方程聯(lián)立,消去,整理得,設,則,所以,將,代入上式,整理得.【點睛】本題考查參數(shù)方程,極坐標方程的應用,結合弦長公式的運用,屬于中檔題.22(1);(2).【解析】(1)連接交于點,連接,利用線面平行的性質(zhì)定理可推導出,然后利用平行線分線段成比例定理可求得的值;(2)取中點,連接、,過點作,則,作于,連接,推導出,可得出為平面與平面所成的銳二
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年宿舍租客入住登記及管理協(xié)議3篇
- 新疆師范高等??茖W校《廣告與招貼》2023-2024學年第一學期期末試卷
- 《人間詞話講義》課件
- 《人民幣匯率制度》課件
- 新疆建設職業(yè)技術學院《班主任與班級管理》2023-2024學年第一學期期末試卷
- 安全施工組織設計
- 路面檢測車合同范例
- 農(nóng)村奶牛轉讓合同范例
- 咖啡設備出售合同范例
- 物流運輸標準合同范例
- 醫(yī)學人工智能原理及實踐
- GB∕T 41550-2022 畜禽屠宰用脫毛劑使用規(guī)范
- 輕型觸探儀地基承載力參數(shù)對照表
- 綜合管理部負責人(部長)崗位職責
- 檢驗科15項質(zhì)量控制指標(檢驗科質(zhì)控小組活動記錄)
- GB∕T 2518-2019 連續(xù)熱鍍鋅和鋅合金鍍層鋼板及鋼帶
- 海南省商品住宅專項維修資金管理辦法
- 美國文學各個時期作家作品集合
- 空運委托書范本
- 工業(yè)氯化芐企業(yè)標準連云港泰樂
- 機翼翼肋實例零件庫設計
評論
0/150
提交評論