版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知,則( )ABCD2在中,已知,為線段上的一點,且,則的最小值為( )ABCD3為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計學(xué)家勞倫茨提出了著名的勞倫茨曲線,如圖所
2、示.勞倫茨曲線為直線時,表示收入完全平等.勞倫茨曲線為折線時,表示收入完全不平等.記區(qū)域為不平等區(qū)域,表示其面積,為的面積,將稱為基尼系數(shù).對于下列說法:越小,則國民分配越公平;設(shè)勞倫茨曲線對應(yīng)的函數(shù)為,則對,均有;若某國家某年的勞倫茨曲線近似為,則;若某國家某年的勞倫茨曲線近似為,則.其中正確的是:ABCD4己知集合,則( )ABCD 5已知復(fù)數(shù),(為虛數(shù)單位),若為純虛數(shù),則()AB2CD6如圖是國家統(tǒng)計局于2020年1月9日發(fā)布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環(huán)比是指本期與上期作對比.如:2019年2月與2018年2
3、月相比較稱同比,2019年2月與2019年1月相比較稱環(huán)比)根據(jù)該折線圖,下列結(jié)論錯誤的是( ) A2019年12月份,全國居民消費價格環(huán)比持平B2018年12月至2019年12月全國居民消費價格環(huán)比均上漲C2018年12月至2019年12月全國居民消費價格同比均上漲D2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格7一個四面體所有棱長都是4,四個頂點在同一個球上,則球的表面積為( )ABCD8如圖1,九章算術(shù)中記載了一個“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何? 意思是:有一根竹子, 原高一丈(1丈=10尺), 現(xiàn)被風(fēng)折斷,尖端落在地上,竹尖與
4、竹根的距離三尺,問折斷處離地面的高為( )尺. ABCD9函數(shù)圖象的大致形狀是( )ABCD10數(shù)列滿足,且,則( )AB9CD711若點x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(nèi)(包括邊界),則y+1x-2的取值范圍是( )A-3,1B-3,5C-,-35,+D-,-31,+12設(shè)變量滿足約束條件,則目標函數(shù)的最大值是( )A7B5C3D2二、填空題:本題共4小題,每小題5分,共20分。13如圖,的外接圓半徑為,為邊上一點,且,則的面積為_.14已知是同一球面上的四個點,其中平面,是正三角形,則該球的表面積為_.15某商場一年中各月份的收入、支出情況的統(tǒng)計如圖所示,下列說法中正確
5、的是_.2至3月份的收入的變化率與11至12月份的收入的變化率相同;支出最高值與支出最低值的比是6:1;第三季度平均收入為50萬元;利潤最高的月份是2月份16某公園劃船收費標準如表:某班16名同學(xué)一起去該公園劃船,若每人劃船的時間均為1小時,每只租船必須坐滿,租船最低總費用為_元,租船的總費用共有_種可能.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù),.(1)求函數(shù)在處的切線方程;(2)當時,證明:對任意恒成立.18(12分)已知矩陣,若矩陣,求矩陣的逆矩陣19(12分)若函數(shù)為奇函數(shù),且時有極小值.(1)求實數(shù)的值與實數(shù)的取值范圍;(2)若恒成立,求實
6、數(shù)的取值范圍.20(12分)如圖,在四邊形ABCD中,AB/CD,ABD=30,AB2CD2AD2,DE平面ABCD,EF/BD,且BD2EF()求證:平面ADE平面BDEF;()若二面角CBFD的大小為60,求CF與平面ABCD所成角的正弦值21(12分)已知函數(shù).()當時,求不等式的解集;()若不等式對任意實數(shù)恒成立,求實數(shù)的取值范圍.22(10分)已知橢圓的左、右焦點分別為,離心率為,為橢圓上一動點(異于左右頂點),面積的最大值為(1)求橢圓的方程;(2)若直線與橢圓相交于點兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標;若不存在,請說明理由參考答案一、選
7、擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,將數(shù)據(jù)和做對比,即可判斷.【詳解】由于,故.故選:B.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,屬基礎(chǔ)題.2A【解析】在中,設(shè),結(jié)合三角形的內(nèi)角和及和角的正弦公式化簡可求,可得,再由已知條件求得,考慮建立以所在的直線為軸,以所在的直線為軸建立直角坐標系,根據(jù)已知條件結(jié)合向量的坐標運算求得,然后利用基本不等式可求得的最小值.【詳解】在中,設(shè),即,即,即,又,則,所以,解得,.以所在的直線為軸,以所在的直線為軸建立如下圖所示的平面直角坐標系,則、
8、,為線段上的一點,則存在實數(shù)使得,設(shè),則,消去得,所以,當且僅當時,等號成立,因此,的最小值為.故選:A.【點睛】本題是一道構(gòu)思非常巧妙的試題,綜合考查了三角形的內(nèi)角和定理、兩角和的正弦公式及基本不等式求解最值問題,解題的關(guān)鍵是理解是一個單位向量,從而可用、表示,建立、與參數(shù)的關(guān)系,解決本題的第二個關(guān)鍵點在于由,發(fā)現(xiàn)為定值,從而考慮利用基本不等式求解最小值,考查計算能力,屬于難題.3A【解析】對于,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國民分配越公平,所以正確.對于,根據(jù)勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以錯誤.對于,因為,所以,所以錯誤.對于,因為,所
9、以,所以正確.故選A4C【解析】先化簡,再求.【詳解】因為,又因為,所以,故選:C.【點睛】本題主要考查一元二次不等式的解法、集合的運算,還考查了運算求解能力,屬于基礎(chǔ)題.5C【解析】把代入,利用復(fù)數(shù)代數(shù)形式的除法運算化簡,由實部為0且虛部不為0求解即可【詳解】,為純虛數(shù),解得故選C【點睛】本題考查復(fù)數(shù)代數(shù)形式的除法運算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題6D【解析】先對圖表數(shù)據(jù)的分析處理,再結(jié)簡單的合情推理一一檢驗即可【詳解】由折線圖易知A、C正確;2019年3月份及6月份的全國居民消費價格環(huán)比是負的,所以B錯誤;設(shè)2018年12月份,2018年11月份,2017年12月份的全國居民消費價格分別為
10、,由題意可知,則有,所以D正確.故選:D【點睛】此題考查了對圖表數(shù)據(jù)的分析處理能力及進行簡單的合情推理,屬于中檔題.7A【解析】將正四面體補成正方體,通過正方體的對角線與球的半徑關(guān)系,求解即可【詳解】解:如圖,將正四面體補形成一個正方體,正四面體的外接球與正方體的外接球相同,四面體所有棱長都是4,正方體的棱長為,設(shè)球的半徑為,則,解得,所以,故選:A【點睛】本題主要考查多面體外接球問題,解決本題的關(guān)鍵在于,巧妙構(gòu)造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉(zhuǎn)化,屬于中檔題8B【解析】如圖,已知,解得, ,解得.折斷后的竹干高為4.55尺故選B.9B【解析】判斷函數(shù)的奇偶性
11、,可排除A、C,再判斷函數(shù)在區(qū)間上函數(shù)值與的大小,即可得出答案.【詳解】解:因為,所以,所以函數(shù)是奇函數(shù),可排除A、C;又當,可排除D;故選:B.【點睛】本題考查函數(shù)表達式判斷函數(shù)圖像,屬于中檔題.10A【解析】先由題意可得數(shù)列為等差數(shù)列,再根據(jù),可求出公差,即可求出【詳解】數(shù)列滿足,則數(shù)列為等差數(shù)列,故選:【點睛】本題主要考查了等差數(shù)列的性質(zhì)和通項公式的求法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題11D【解析】畫出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內(nèi)的點(x,y)和定點(2,-1)連線的斜率,然后結(jié)合圖形求解可得所求范圍【詳解】畫出曲線x=y-2+1
12、與x=3圍成的封閉區(qū)域,如圖陰影部分所示y+1x-2表示封閉區(qū)域內(nèi)的點(x,y)和定點P(2,-1)連線的斜率,設(shè)k=y+1x-2,結(jié)合圖形可得kkPA或kkPB,由題意得點A,B的坐標分別為A(3,0),B(1,2),kPA=13-2=1,kPB=2-(-1)1-2=-3,k1或k-3,y+1x-2的取值范圍為-,-31,+故選D【點睛】解答本題的關(guān)鍵有兩個:一是根據(jù)數(shù)形結(jié)合的方法求解問題,即把y+1x-2看作兩點間連線的斜率;二是要正確畫出兩曲線所圍成的封閉區(qū)域考查轉(zhuǎn)化能力和屬性結(jié)合的能力,屬于基礎(chǔ)題12B【解析】由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立
13、方程組求得最優(yōu)解的坐標,把最優(yōu)解的坐標代入目標函數(shù)得結(jié)論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當直經(jīng)過點時,直線在軸上的截距最大,最大值為,故選B.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標函數(shù)的最值,屬于簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.二、填空題:本題共4小題,每小題5分,共20分。13【解析】先由正弦定理得到,再在三角形ABD、
14、ADC中分別由正弦定理進一步得到B=C,最后利用面積公式計算即可.【詳解】依題意可得,由正弦定理得,即,由圖可知是鈍角,所以,在三角形ABD中,在三角形ADC中,由正弦定理得即,所以,故,故的面積為.故答案為:.【點睛】本題考查正弦定理解三角形,考查學(xué)生的基本計算能力,要靈活運用正弦定理公式及三角形面積公式,本題屬于中檔題.14【解析】求得等邊三角形的外接圓半徑,利用勾股定理求得三棱錐外接球的半徑,進而求得外接球的表面積.【詳解】設(shè)是等邊三角形的外心,則球心在其正上方處.設(shè),由正弦定理得.所以得三棱錐外接球的半徑,所以外接球的表面積為.故答案為:【點睛】本小題主要考查幾何體外接球表面積的計算,
15、屬于基礎(chǔ)題.15【解析】通過圖片信息直接觀察,計算,找出答案即可【詳解】對于,2至月份的收入的變化率為20,11至12月份的變化率為20,故相同,正確對于,支出最高值是2月份60萬元,支出最低值是5月份的10萬元,故支出最高值與支出最低值的比是6:1,正確對于,第三季度的7,8,9月每個月的收入分別為40萬元,50萬元,60萬元,故第三季度的平均收入為50萬元,正確對于,利潤最高的月份是3月份和10月份都是30萬元,高于2月份的利潤是806020萬元,錯誤故答案為【點睛】本題考查利用圖象信息,分析歸納得出正確結(jié)論,屬于基礎(chǔ)題目16360 10 【解析】列出所有租船的情況,分別計算出租金,由此能
16、求出結(jié)果.【詳解】當租兩人船時,租金為:元,當租四人船時,租金為:元,當租1條四人船6條兩人船時,租金為:元,當租2條四人船4條兩人船時,租金為:元,當租3條四人船2條兩人船時,租金為:元,當租1條六人船5條2人船時,租金為:元,當租2條六人船2條2人船時,租金為:元,當租1條六人船1條四人船3條2人船時,租金為:元,當租1條六人船2條四人船1條2人船時,租金為:元,當租2條六人船1條四人船時,租金為:元,綜上,租船最低總費用為360元,租船的總費用共有10種可能.故答案為:360,10.【點睛】本小題主要考查分類討論的數(shù)學(xué)思想方法,考查實際應(yīng)用問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫
17、出文字說明、證明過程或演算步驟。17(1)(2)見解析【解析】(1)因為,可得,即可求得答案;(2)要證對任意恒成立,即證對任意恒成立.設(shè),當時,即可求得答案.【詳解】(1),函數(shù)在處的切線方程為.(2)要證對任意恒成立.即證對任意恒成立.設(shè),當時,令,解得,當時,函數(shù)在上單調(diào)遞減;當時,函數(shù)在上單調(diào)遞增.,當時,對任意恒成立,即當時,對任意恒成立.【點睛】本題主要考查了求曲線的切線方程和求證不等式恒成立問題,解題關(guān)鍵是掌握由導(dǎo)數(shù)求切線方程的解法和根據(jù)導(dǎo)數(shù)求證不等式恒成立的方法,考查了分析能力和計算能力,屬于難題.18【解析】試題分析:,所以試題解析:B因為, 所以19(1), ;(2)【解析
18、】(1)由奇函數(shù)可知 在定義域上恒成立,由此建立方程,即可求出實數(shù)的值;對函數(shù)進行求導(dǎo),通過導(dǎo)數(shù)求出,若,則恒成立不符合題意,當,可證明,此時時有極小值.(2)可知,進而得到,令,通過導(dǎo)數(shù)可知在上為單調(diào)減函數(shù),由可得,從而可求實數(shù)的取值范圍.【詳解】(1)由函數(shù)為奇函數(shù),得在定義域上恒成立,所以,化簡可得,所以.則,令,則.故當時,;當時,故在上遞減,在上遞增,若,則恒成立,單調(diào)遞增,無極值點;所以,解得,取,則又函數(shù)的圖象在區(qū)間上連續(xù)不間斷,故由函數(shù)零點存在性定理知在區(qū)間上,存在為函數(shù)的零點,為極小值,所以,的取值范圍是.(2)由滿足,代入,消去可得.構(gòu)造函數(shù),所以,當時,即恒成立,故在上為
19、單調(diào)減函數(shù),其中.則可轉(zhuǎn)化為,故,由,設(shè),可得當時,則在上遞增,故.綜上,的取值范圍是.【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)求函數(shù)的最值,考查了奇函數(shù)的定義,考查了轉(zhuǎn)化的思想.對于 恒成立的問題,常轉(zhuǎn)化為求 的最小值,使;對于 恒成立的問題,常轉(zhuǎn)化為求 的最大值,使.20(1)見解析(2)【解析】分析:(1)根據(jù)面面垂直的判定定理即可證明平面ADE平面BDEF;(2)建立空間直角坐標系,利用空間向量法即可求CF與平面ABCD所成角的正弦值;也可以應(yīng)用常規(guī)法,作出線面角,放在三角形當中來求解.詳解:()在ABD中,ABD30,由AO2AB2+BD22ABBDcos30,解得
20、BD,所以AB2+BD2=AB2,根據(jù)勾股定理得ADB90ADBD.又因為DE平面ABCD,AD平面ABCD,ADDE.又因為BDDED,所以AD平面BDEF,又AD平面ABCD,平面ADE平面BDEF, ()方法一: 如圖,由已知可得,則,則三角形BCD為銳角為30的等腰三角形. 則.過點C做,交DB、AB于點G,H,則點G為點F在面ABCD上的投影.連接FG,則,DE平面ABCD,則平面.過G做于點I,則BF平面,即角為二面角CBFD的平面角,則60.則,則.在直角梯形BDEF中,G為BD中點,設(shè) ,則,則. ,則,即CF與平面ABCD所成角的正弦值為()方法二:可知DA、DB、DE兩兩垂直,以D為原點,建立如圖所示的空間直角坐標系D-xyz.設(shè)DEh,則D(0,0,0),B(0,0),C(,h).,. 設(shè)平面BCF的法向量為m(x,y,z),則所以取x=,所以m(,-1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度木制家具出口業(yè)務(wù)分包勞務(wù)合同3篇
- 體育中心2025年度灌溉系統(tǒng)專用化肥及農(nóng)藥供應(yīng)合同3篇
- 2025年度配電變壓器租賃與電網(wǎng)安全培訓(xùn)服務(wù)合同
- 二零二五年度新型民間借貸服務(wù)合同規(guī)范(2025版)
- 二零二五年度農(nóng)產(chǎn)品電商平臺入駐合同范本
- 二零二五年度民營中小企業(yè)企業(yè)社會責(zé)任履行服務(wù)合同
- 二零二五年度工業(yè)廠房外墻鋁型板安裝與維護合同
- 二零二五年度美容美發(fā)店員工健康體檢服務(wù)合同2篇
- 二零二四年度新能源產(chǎn)業(yè)聯(lián)營項目合同3篇
- 2025年水塘蓮藕種植承包與品牌推廣合作合同
- 南通市2025屆高三第一次調(diào)研測試(一模)地理試卷(含答案 )
- 2025年上海市閔行區(qū)中考數(shù)學(xué)一模試卷
- 2025中國人民保險集團校園招聘高頻重點提升(共500題)附帶答案詳解
- 重癥患者家屬溝通管理制度
- 法規(guī)解讀丨2024新版《突發(fā)事件應(yīng)對法》及其應(yīng)用案例
- IF鋼物理冶金原理與關(guān)鍵工藝技術(shù)1
- 銷售提成對賭協(xié)議書范本 3篇
- 勞務(wù)派遣招標文件范本
- EPC項目階段劃分及工作結(jié)構(gòu)分解方案
- 《跨學(xué)科實踐活動4 基于特定需求設(shè)計和制作簡易供氧器》教學(xué)設(shè)計
- 信息安全意識培訓(xùn)課件
評論
0/150
提交評論