版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數學模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知橢圓:的左、右焦點分別為,點,在橢圓上,其中,若,則橢圓的離心率的取值范圍為( )ABCD2設變量滿足約束條件,則目標函數的最大值是( )A7B5C3D23已知數列對任意的有成立,
2、若,則等于( )ABCD4已知隨機變量服從正態(tài)分布,( )ABCD5已知(),i為虛數單位,則( )AB3C1D56生活中人們常用“通五經貫六藝”形容一個人才識技藝過人,這里的“六藝”其實源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數”.為弘揚中國傳統(tǒng)文化,某校在周末學生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數”必須排在前兩節(jié),“禮”和“樂”必須分開安排的概率為( )ABCD7由曲線yx2與曲線y2x所圍成的平面圖形的面積為()A1BCD8在正項等比數列an中,a5-a1=15,a4-a2 =6,則a3=( )A2B4CD89設等差數列的前項和為,
3、若,則( )A21B22C11D1210設集合Ay|y2x1,xR,Bx|2x3,xZ,則AB( )A(1,3B1,3C0,1,2,3D1,0,1,2,311甲、乙、丙、丁四位同學高考之后計劃去三個不同社區(qū)進行幫扶活動,每人只能去一個社區(qū),每個社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數為 ( )A8B7C6D512袋中裝有標號為1,2,3,4,5,6且大小相同的6個小球,從袋子中一次性摸出兩個球,記下號碼并放回,如果兩個號碼的和是3的倍數,則獲獎,若有5人參與摸球,則恰好2人獲獎的概率是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13在中,角,的對邊長分
4、別為,滿足,則的面積為_14已知,則的最小值是_15假設10公里長跑,甲跑出優(yōu)秀的概率為,乙跑出優(yōu)秀的概率為,丙跑出優(yōu)秀的概率為,則甲、乙、丙三人同時參加10公里長跑,剛好有2人跑出優(yōu)秀的概率為_16在回歸分析的問題中,我們可以通過對數變換把非線性回歸方程,()轉化為線性回歸方程,即兩邊取對數,令,得到.受其啟發(fā),可求得函數()的值域是_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)在中,(1)求的值;(2)點為邊上的動點(不與點重合),設,求的取值范圍18(12分)某工廠,兩條相互獨立的生產線生產同款產品,在產量一樣的情況下通過日常監(jiān)控得知,生產線生產的產品為
5、合格品的概率分別為和.(1)從,生產線上各抽檢一件產品,若使得至少有一件合格的概率不低于,求的最小值.(2)假設不合格的產品均可進行返工修復為合格品,以(1)中確定的作為的值.已知,生產線的不合格產品返工后每件產品可分別挽回損失元和元若從兩條生產線上各隨機抽檢件產品,以挽回損失的平均數為判斷依據,估計哪條生產線挽回的損失較多?若最終的合格品(包括返工修復后的合格品)按照一、二、三等級分類后,每件分別獲利元、元、元,現從,生產線的最終合格品中各隨機抽取件進行檢測,結果統(tǒng)計如下圖;用樣本的頻率分布估計總體分布,記該工廠生產一件產品的利潤為,求的分布列并估算該廠產量件時利潤的期望值.19(12分)已
6、知橢圓:的離心率為,左、右頂點分別為、,過左焦點的直線交橢圓于、兩點(異于、兩點),當直線垂直于軸時,四邊形的面積為1(1)求橢圓的方程;(2)設直線、的交點為;試問的橫坐標是否為定值?若是,求出定值;若不是,請說明理由20(12分)函數(1)證明:;(2)若存在,且,使得成立,求取值范圍.21(12分)在ABC中,分別為三個內角A、B、C的對邊,且(1)求角A;(2)若且求ABC的面積22(10分)設為實數,在極坐標系中,已知圓()與直線相切,求的值參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】根據可得四邊形為矩形,
7、 設,根據橢圓的定義以及勾股定理可得,再分析的取值范圍,進而求得再求離心率的范圍即可.【詳解】設,由,知,因為,在橢圓上,所以四邊形為矩形,;由,可得,由橢圓的定義可得,平方相減可得,由得;令,令,所以,即,所以,所以,所以,解得.故選:C【點睛】本題主要考查了橢圓的定義運用以及構造齊次式求橢圓的離心率的問題,屬于中檔題.2B【解析】由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優(yōu)解,聯立方程組求得最優(yōu)解的坐標,把最優(yōu)解的坐標代入目標函數得結論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當直經過點時,直線在軸上的截距最大,最大值為,故選B
8、.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標函數的最值,屬于簡單題.求目標函數最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數對應的最優(yōu)解對應點(在可行域內平移變形后的目標函數,最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數求出最值.3B【解析】觀察已知條件,對進行化簡,運用累加法和裂項法求出結果.【詳解】已知,則,所以有, ,兩邊同時相加得,又因為,所以.故選:【點睛】本題考查了求數列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進行求和,需要掌握數列中的方法,并能熟練運用對應方法求解.4B【解析
9、】利用正態(tài)分布密度曲線的對稱性可得出,進而可得出結果.【詳解】,所以,.故選:B.【點睛】本題考查利用正態(tài)分布密度曲線的對稱性求概率,屬于基礎題.5C【解析】利用復數代數形式的乘法運算化簡得答案.【詳解】由,得,解得.故選:C.【點睛】本題考查復數代數形式的乘法運算,是基礎題.6C【解析】分情況討論,由間接法得到“數”必須排在前兩節(jié),“禮”和“樂”必須分開的事件個數,不考慮限制因素,總數有種,進而得到結果.【詳解】當“數”位于第一位時,禮和樂相鄰有4種情況,禮和樂順序有2種,其它剩下的有種情況,由間接法得到滿足條件的情況有 當“數”在第二位時,禮和樂相鄰有3種情況,禮和樂順序有2種,其它剩下的
10、有種,由間接法得到滿足條件的情況有共有:種情況,不考慮限制因素,總數有種,故滿足條件的事件的概率為: 故答案為:C.【點睛】解排列組合問題要遵循兩個原則:按元素(或位置)的性質進行分類;按事情發(fā)生的過程進行分步具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置)7B【解析】首先求得兩曲線的交點坐標,據此可確定積分區(qū)間,然后利用定積分的幾何意義求解面積值即可.【詳解】聯立方程:可得:,結合定積分的幾何意義可知曲線yx2與曲線y2x所圍成的平面圖形的面積為:.本題選擇B選項.【點睛】本題主要考查定積分的概念與計算,屬于中等題.8B【解析】根據題意得
11、到,解得答案.【詳解】,解得或(舍去).故.故選:.【點睛】本題考查了等比數列的計算,意在考查學生的計算能力.9A【解析】由題意知成等差數列,結合等差中項,列出方程,即可求出的值.【詳解】解:由為等差數列,可知也成等差數列,所以 ,即,解得.故選:A.【點睛】本題考查了等差數列的性質,考查了等差中項.對于等差數列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結合等差數列性質,可使得計算量大大減少.10C【解析】先求集合A,再用列舉法表示出集合B,再根據交集的定義求解即可【詳解】解:集合Ay|y2x1,xRy|y1,Bx|2x3,xZ2,1,0,
12、1,2,3,AB0,1,2,3,故選:C【點睛】本題主要考查集合的交集運算,屬于基礎題11B【解析】根據題意滿足條件的安排為:A(甲,乙)B(丙)C(?。籄(甲,乙)B(?。〤(丙);A(甲,丙)B(丁)C(乙); A(甲,?。〣(丙)C(乙); A(甲)B(丙,?。〤(乙);A(甲)B(?。〤(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B. 12C【解析】先確定摸一次中獎的概率,5個人摸獎,相當于發(fā)生5次試驗,根據每一次發(fā)生的概率,利用獨立重復試驗的公式得到結果【詳解】從6個球中摸出2個,共有種結果,兩個球的號碼之和是3的倍數,共有摸一次中獎的概率是,5個人摸獎,相當于發(fā)生5次試驗
13、,且每一次發(fā)生的概率是,有5人參與摸獎,恰好有2人獲獎的概率是,故選:【點睛】本題主要考查了次獨立重復試驗中恰好發(fā)生次的概率,考查獨立重復試驗的概率,解題時主要是看清摸獎5次,相當于做了5次獨立重復試驗,利用公式做出結果,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13【解析】由二次方程有解的條件,結合輔助角公式和正弦函數的值域可求,進而可求,然后結合余弦定理可求,代入,計算可得所求【詳解】解:把看成關于的二次方程,則,即,即為,化為,而,則,由于,可得,可得,即,代入方程可得,由余弦定理可得,解得:(負的舍去),故答案為【點睛】本題主要考查一元二次方程的根的存在條件及輔助角公式
14、及余弦定理和三角形的面積公式的應用,屬于中檔題14【解析】因為,展開后利用基本不等式,即可得到本題答案.【詳解】由,得,所以,當且僅當,取等號.故答案為:【點睛】本題主要考查利用基本不等式求最值,考查學生的轉化能力和運算求解能力.15【解析】分跑出優(yōu)秀的人為:甲、乙和甲、丙和乙、丙三種情況分別計算再求和即可.【詳解】剛好有2人跑出優(yōu)秀有三種情況:其一是只有甲、乙兩人跑出優(yōu)秀的概率為;其二是只有甲、丙兩人跑出優(yōu)秀的概率為;其三是只有乙、丙兩人跑出優(yōu)秀的概率為,三種情況相加得.即剛好有2人跑出優(yōu)秀的概率為.故答案為:【點睛】本題主要考查了分類方法求解事件概率的問題,屬于基礎題.16【解析】轉化()
15、為,即得解.【詳解】由題意:().故答案為:【點睛】本題考查類比法求函數的值域,考查了學生邏輯推理,轉化劃歸,數學運算的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)(2)【解析】(1)先利用同角的三角函數關系求得,再由求解即可;(2)在中,由正弦定理可得,則,再由求解即可.【詳解】解:(1)在中,所以,所以 (2)由(1)可知,所以,在中,因為,所以,因為,所以 , 所以.【點睛】本題考查已知三角函數值求值,考查正弦定理的應用.18 (1) (2) 生產線上挽回的損失較多. 見解析【解析】(1)由題意得到關于的不等式,求解不等式得到的取值范圍即可確
16、定其最小值;(2).由題意利用二項分布的期望公式和數學期望的性質給出結論即可;.由題意首先確定X可能的取值,然后求得相應的概率值可得分布列,最后由分布列可得利潤的期望值.【詳解】(1)設從,生產線上各抽檢一件產品,至少有一件合格為事件,設從,生產線上抽到合格品分別為事件,則,互為獨立事件由已知有,則解得,則的最小值(2)由(1)知,生產線的合格率分別為和,即不合格率分別為和.設從,生產線上各抽檢件產品,抽到不合格產品件數分別為,則有,所以,生產線上挽回損失的平均數分別為:,所以生產線上挽回的損失較多.由已知得的可能取值為,用樣本估計總體,則有,所以的分布列為所以(元)故估算估算該廠產量件時利潤
17、的期望值為(元)【點睛】本題主要考查概率公式的應用,二項分布的性質與方差的求解,離散型隨機變量及其分布列的求解等知識,意在考查學生的轉化能力和計算求解能力.19(1)(2)是為定值,的橫坐標為定值【解析】(1)根據“直線垂直于軸時,四邊形的面積為1”列方程,由此求得,結合橢圓離心率以及,求得,由此求得橢圓方程.(2)設出直線的方程,聯立直線的方程和橢圓方程,化簡后寫出根與系數關系.求得直線的方程,并求得兩直線交點的橫坐標,結合根與系數關系進行化簡,求得的橫坐標為定值.【詳解】(1)依題意可知,解得,即;而,即,結合解得,因此橢圓方程為(2)由題意得,左焦點,設直線的方程為:,由消去并整理得,直線的方程為:,直線的方程為:聯系方程,解得,又因為所以所以的橫坐標為定值【點睛】本小題主要考查根據橢圓離心率求橢圓方程,考查直線和橢圓的位置關系,考查直線和直線交點坐標的求法,考查運算求解能力,屬于中檔題.20(1)證明見詳解;(2)或或【解析】(1)(2)首先用基本不等式得到,然后解出不等式即可【詳解】(1)因為所以(2)當時所以當且僅當即時等號成立因為存在,且,使得成立所以所以或解得:或或【點睛】1.要熟練掌握絕對值的三角不等式,即2.應用基本不等式求最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024裝修售后服務合同范本
- 2024年高速公路服務區(qū)食堂承包經營服務合同范本匯編3篇
- 鄉(xiāng)鎮(zhèn)長防汛知識培訓課件
- 2025年度個人信息保護與保密服務合同3篇
- 2024食品公司智慧化物流系統(tǒng)建設合同
- 2024心臟內科病歷管理系統(tǒng)升級與優(yōu)化服務合同3篇
- 初級消費者知識培訓課件
- 2025年度出租房屋消防安全責任與維修協議3篇
- 2024贊助合同書范本:年度公益活動支持協議3篇
- 2024男方離婚協議書:包含離婚后雙方財產分割及第三方監(jiān)管協議3篇
- 部編版三年級下冊語文全冊教案及全套導學案
- 2024年國家級森林公園資源承包經營合同范本3篇
- 基于STEAM教育的小學德育創(chuàng)新實踐研究
- 2024年03月山東煙臺銀行招考筆試歷年參考題庫附帶答案詳解
- 河道綜合治理工程施工組織設計
- 江蘇省揚州市2024-2025學年高中學業(yè)水平合格性模擬考試英語試題(含答案)
- 廣東省廣州市番禺區(qū)2023-2024學年八年級上學期期末英語試題
- 2024-2025學年上學期廣州初中英語九年級期末試卷
- 迪士尼樂園總體規(guī)劃
- 惠州學院《大學物理》2021-2022學年第一學期期末試卷
- 2024年世界職業(yè)院校技能大賽高職組“市政管線(道)數字化施工組”賽項考試題庫
評論
0/150
提交評論