版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1設(shè)是虛數(shù)單位,則( )ABCD2某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費開支占總開支的百分比為( )ABCD3
2、已知集合,則等于( )ABCD4下列命題是真命題的是( )A若平面,滿足,則;B命題:,則:,;C“命題為真”是“命題為真”的充分不必要條件;D命題“若,則”的逆否命題為:“若,則”.5已知空間兩不同直線、,兩不同平面,下列命題正確的是( )A若且,則B若且,則C若且,則D若不垂直于,且,則不垂直于6已知 若在定義域上恒成立,則的取值范圍是( )ABCD7已知在平面直角坐標(biāo)系中,圓:與圓:交于,兩點,若,則實數(shù)的值為( )A1B2C-1D-28一個由兩個圓柱組合而成的密閉容器內(nèi)裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時,液面以上空余部分的高為,如圖2放置容器時,液面以上
3、空余部分的高為,則( )ABCD9已知函數(shù),且關(guān)于的方程有且只有一個實數(shù)根,則實數(shù)的取值范圍( )ABCD10已知直線和平面,若,則“”是“”的( )A充分不必要條件B必要不充分條件C充分必要條件D不充分不必要11定義在上的偶函數(shù),對,且,有成立,已知,則,的大小關(guān)系為( )ABCD12已知全集,集合,則陰影部分表示的集合是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知均為非負(fù)實數(shù),且,則的取值范圍為_14已知集合,則_15若,則_.16某種賭博每局的規(guī)則是:賭客先在標(biāo)記有1,2,3,4,5的卡片中隨機(jī)摸取一張,將卡片上的數(shù)字作為其賭金;隨后放回該卡片,再隨機(jī)摸取兩張,
4、將這兩張卡片上數(shù)字之差的絕對值的1.4倍作為其獎金若隨機(jī)變量1和2分別表示賭客在一局賭博中的賭金和獎金,則D(1)_,E(1)E(2)_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)得到曲線,以坐標(biāo)原點為極點,軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)寫出的極坐標(biāo)方程與直線的直角坐標(biāo)方程;(2)曲線上是否存在不同的兩點,(以上兩點坐標(biāo)均為極坐標(biāo),),使點、到的距離都為3?若存在,求的值;若不存在,請說明理由.18(12分)對于正整數(shù),如果個整數(shù)滿足,且,則稱數(shù)
5、組為的一個“正整數(shù)分拆”.記均為偶數(shù)的“正整數(shù)分拆”的個數(shù)為均為奇數(shù)的“正整數(shù)分拆”的個數(shù)為.()寫出整數(shù)4的所有“正整數(shù)分拆”;()對于給定的整數(shù),設(shè)是的一個“正整數(shù)分拆”,且,求的最大值;()對所有的正整數(shù),證明:;并求出使得等號成立的的值.(注:對于的兩個“正整數(shù)分拆”與,當(dāng)且僅當(dāng)且時,稱這兩個“正整數(shù)分拆”是相同的.)19(12分)在中,角的對邊分別為.已知,.(1)若,求;(2)求的面積的最大值.20(12分)數(shù)列的前項和為,且.數(shù)列滿足,其前項和為.(1)求數(shù)列與的通項公式;(2)設(shè),求數(shù)列的前項和.21(12分)已知函數(shù),.(1)當(dāng)時,求函數(shù)在點處的切線方程;比較與的大小; (2
6、)當(dāng)時,若對時,且有唯一零點,證明:22(10分)()證明: ;()證明:();()證明:.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】利用復(fù)數(shù)的乘法運算可求得結(jié)果.【詳解】由復(fù)數(shù)的乘法法則得.故選:A.【點睛】本題考查復(fù)數(shù)的乘法運算,考查計算能力,屬于基礎(chǔ)題.2A【解析】由折線圖找出水、電、交通開支占總開支的比例,再計算出水費開支占水、電、交通開支的比例,相乘即可求出水費開支占總開支的百分比.【詳解】水費開支占總開支的百分比為.故選:A【點睛】本題考查折線圖與柱形圖,屬于基礎(chǔ)題.3A【解析】進(jìn)行交集的運算即可【詳解
7、】,1,2,1,故選:【點睛】本題主要考查了列舉法、描述法的定義,考查了交集的定義及運算,考查了計算能力,屬于基礎(chǔ)題4D【解析】根據(jù)面面關(guān)系判斷A;根據(jù)否定的定義判斷B;根據(jù)充分條件,必要條件的定義判斷C;根據(jù)逆否命題的定義判斷D.【詳解】若平面,滿足,則可能相交,故A錯誤;命題“:,”的否定為:,故B錯誤;為真,說明至少一個為真命題,則不能推出為真;為真,說明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D【點睛】本題主要考查了判斷必要不充分條件,寫出命題的逆否命題等,屬于中檔題.5C【解析】因答案A中的直
8、線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確應(yīng)選答案C6C【解析】先解不等式,可得出,求出函數(shù)的值域,由題意可知,不等式在定義域上恒成立,可得出關(guān)于的不等式,即可解得實數(shù)的取值范圍.【詳解】,先解不等式.當(dāng)時,由,得,解得,此時;當(dāng)時,由,得.所以,不等式的解集為.下面來求函數(shù)的值域.當(dāng)時,則,此時;當(dāng)時,此時.綜上所述,函數(shù)的值域為,由于在定義域上恒成立,則不等式在定義域上恒成立,所以,解得.因此,實數(shù)的取值范圍是.故選:C.【點睛】本題考查利用函數(shù)不
9、等式恒成立求參數(shù),同時也考查了分段函數(shù)基本性質(zhì)的應(yīng)用,考查分類討論思想的應(yīng)用,屬于中等題.7D【解析】由可得,O在AB的中垂線上,結(jié)合圓的性質(zhì)可知O在兩個圓心的連線上,從而可求.【詳解】因為,所以O(shè)在AB的中垂線上,即O在兩個圓心的連線上,三點共線,所以,得,故選D.【點睛】本題主要考查圓的性質(zhì)應(yīng)用,幾何性質(zhì)的轉(zhuǎn)化是求解的捷徑.8B【解析】根據(jù)空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因為,所以.故選:B【點睛】本題考查圓柱的體積,屬于基礎(chǔ)題.9B【解析】根據(jù)條件可知方程有且只有一個實根等價于函數(shù)的圖象與直線只有一個交點,
10、作出圖象,數(shù)形結(jié)合即可【詳解】解:因為條件等價于函數(shù)的圖象與直線只有一個交點,作出圖象如圖,由圖可知,故選:B【點睛】本題主要考查函數(shù)圖象與方程零點之間的關(guān)系,數(shù)形結(jié)合是關(guān)鍵,屬于基礎(chǔ)題10B【解析】由線面關(guān)系可知,不能確定與平面的關(guān)系,若一定可得,即可求出答案.【詳解】,不能確定還是,當(dāng)時,存在,由又可得,所以“”是“”的必要不充分條件,故選:B【點睛】本題主要考查了必要不充分條件,線面垂直,線線垂直的判定,屬于中檔題.11A【解析】根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性即可判斷.【詳解】解:對,且,有在上遞增因為定義在上的偶函數(shù)所以在上遞減又因為,所以故選:A【點睛】考查偶函數(shù)的性質(zhì)以及單調(diào)性的應(yīng)用,基
11、礎(chǔ)題.12D【解析】先求出集合N的補集,再求出集合M與的交集,即為所求陰影部分表示的集合.【詳解】由,可得或,又所以.故選:D.【點睛】本題考查了韋恩圖表示集合,集合的交集和補集的運算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】設(shè),可得的取值范圍,分別利用基本不等式和,把用代換,結(jié)合的取值范圍求關(guān)于的二次函數(shù)的最值即可求解.【詳解】因為,,令,則 ,因為,當(dāng)且僅當(dāng)時等號成立,所以 ,即,令則函數(shù)的對稱軸為,所以當(dāng)時函數(shù)有最大值為,即當(dāng)且,即,或,時取等號;因為,當(dāng)且僅當(dāng)時等號成立,所以,令,則函數(shù)的對稱軸為,所以當(dāng)時,函數(shù)有最小值為,即,當(dāng),且時取等號,所以.故答
12、案為:【點睛】本題考查基本不等式與二次函數(shù)求最值相結(jié)合求代數(shù)式的取值范圍;考查運算求解能力和知識的綜合運用能力;基本不等式:和的靈活運用是求解本題的關(guān)鍵;屬于綜合型、難度大型試題.14【解析】由于,則1513【解析】由導(dǎo)函數(shù)的應(yīng)用得:設(shè),所以,又,所以,即,由二項式定理:令得:,再由,求出,從而得到的值;【詳解】解:設(shè),所以,又,所以,即,取得:,又,所以,故,故答案為:13【點睛】本題考查了導(dǎo)函數(shù)的應(yīng)用、二項式定理,屬于中檔題162 0.2 【解析】分別求出隨機(jī)變量1和2的分布列,根據(jù)期望和方差公式計算得解.【詳解】設(shè)a,b1,2,1,4,5,則p(1a),其1分布列為:1 1 2 1 4
13、5 P E(1)(1+2+1+4+5)1D(1)(11)2+(21)2+(11)2+(41)2+(51)2221.4|ab|的可能取值分別為:1.4,2.3,4.2,5.6,P(21.4),P(22.3),P(24.2),P(25.6),可得分布列2 1.4 2.3 4.2 5.6 P E(2)1.42.34.25.62.3E(1)E(2)0.2故答案為:2,0.2【點睛】此題考查隨機(jī)變量及其分布,關(guān)鍵在于準(zhǔn)確求出隨機(jī)變量取值的概率,根據(jù)公式準(zhǔn)確計算期望和方差.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1),(2)存在,【解析】(1)先求得曲線的普通方程,利用伸縮變換
14、的知識求得曲線的直角坐標(biāo)方程,再轉(zhuǎn)化為極坐標(biāo)方程.根據(jù)極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化公式,求得直線的直角坐標(biāo)方程.(2)求得曲線的圓心和半徑,計算出圓心到直線的距離,結(jié)合圖像判斷出存在符合題意,并求得的值.【詳解】(1)曲線的普通方程為,縱坐標(biāo)伸長到原來的2倍,得到曲線的直角坐標(biāo)方程為,其極坐標(biāo)方程為,直線的直角坐標(biāo)方程為.(2)曲線是以為圓心,為半徑的圓,圓心到直線的距離.由圖像可知,存在這樣的點,則,且點到直線的距離,.【點睛】本小題主要考查坐標(biāo)變換,考查直線和圓的位置關(guān)系,考查極坐標(biāo)方程和直角坐標(biāo)方程相互轉(zhuǎn)化,考查參數(shù)方程化為普通方程,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.18 () ,;()
15、為偶數(shù)時,為奇數(shù)時,;()證明見解析,【解析】()根據(jù)題意直接寫出答案.()討論當(dāng)為偶數(shù)時,最大為,當(dāng)為奇數(shù)時,最大為,得到答案.() 討論當(dāng)為奇數(shù)時,至少存在一個全為1的拆分,故,當(dāng)為偶數(shù)時, 根據(jù)對應(yīng)關(guān)系得到,再計算,得到答案.【詳解】()整數(shù)4的所有“正整數(shù)分拆”為:,.()當(dāng)為偶數(shù)時,時,最大為;當(dāng)為奇數(shù)時,時,最大為;綜上所述:為偶數(shù),最大為,為奇數(shù)時,最大為.()當(dāng)為奇數(shù)時,至少存在一個全為1的拆分,故;當(dāng)為偶數(shù)時,設(shè)是每個數(shù)均為偶數(shù)的“正整數(shù)分拆”,則它至少對應(yīng)了和的均為奇數(shù)的“正整數(shù)分拆”,故.綜上所述:.當(dāng)時,偶數(shù)“正整數(shù)分拆”為,奇數(shù)“正整數(shù)分拆”為,;當(dāng)時,偶數(shù)“正整數(shù)分
16、拆”為,奇數(shù)“正整數(shù)分拆”為,故;當(dāng)時,對于偶數(shù)“正整數(shù)分拆”,除了各項不全為的奇數(shù)拆分外,至少多出一項各項均為的“正整數(shù)分拆”,故.綜上所述:使成立的為:或.【點睛】本土考查了數(shù)列的新定義問題,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.19(1);(2)4【解析】(1)根據(jù)已知用二倍角余弦求出,進(jìn)而求出,利用正弦定理,即可求解;(2)由邊角,利用余弦定理結(jié)合基本不等式,求出的最大值,即可求出結(jié)論.【詳解】(1),由正弦定理得.(2)由(1)知,所以,當(dāng)且僅當(dāng)時,的面積有最大值4.【點睛】本題考查正弦定理、余弦定理、三角恒等變換解三角形,應(yīng)用基本不等式求最值,屬于基礎(chǔ)題.20(1),;(2).【解
17、析】(1)令可求得的值,令,由得出,兩式相減可推導(dǎo)出數(shù)列為等比數(shù)列,確定該數(shù)列的公比,利用等比數(shù)列的通項公式可求得數(shù)列的通項公式,再利用對數(shù)的運算性質(zhì)可得出數(shù)列的通項公式;(2)運用等差數(shù)列的求和公式,運用數(shù)列的分組求和和裂項相消求和,化簡可得.【詳解】(1)當(dāng)時,所以;當(dāng)時,得,即,所以,數(shù)列是首項為,公比為 的等比數(shù)列,.;(2)由(1)知數(shù)列是首項為,公差為的等差數(shù)列,.,.所以.【點睛】本題考查數(shù)列的遞推式的運用,注意結(jié)合等比數(shù)列的定義和通項公式,考查數(shù)列的求和方法:分組求和法和裂項相消求和,考查運算能力,屬于中檔題21(1)見解析,見解析;(2)見解析【解析】(1)把代入函數(shù)解析式,
18、求出函數(shù)的導(dǎo)函數(shù)得到,再求出,利用直線方程的點斜式求函數(shù)在點處的切線方程;令,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得當(dāng)時,;當(dāng)時,;當(dāng)時,(2)由題意,在上有唯一零點利用導(dǎo)數(shù)可得當(dāng)時,在上單調(diào)遞減,當(dāng),時,在,上單調(diào)遞增,得到由在恒成立,且有唯一解,可得,得,即令,則,再由在上恒成立,得在上單調(diào)遞減,進(jìn)一步得到在上單調(diào)遞增,由此可得【詳解】解:(1)當(dāng)時,又,切線方程為,即;令,則,在上單調(diào)遞減又,當(dāng)時,即;當(dāng)時,即;當(dāng)時,即證明:(2)由題意,而,令,解得,在上有唯一零點當(dāng)時,在上單調(diào)遞減,當(dāng),時,在,上單調(diào)遞增在恒成立,且有唯一解,即,消去,得,即令,則,在上恒成立,在上單調(diào)遞減,又, ,在上單調(diào)遞
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇科版八年級物理下冊《第八章力與運動》單元檢測卷及答案
- 人教版七年級數(shù)學(xué)下冊全冊導(dǎo)學(xué)案
- 《誡子書》復(fù)習(xí)課
- 中小學(xué)機(jī)房作品管理系統(tǒng)的開發(fā)與應(yīng)用研究
- 高一化學(xué)二第二章第二節(jié)化學(xué)能與電能練習(xí)
- 2024屆安徽省巢湖市某中學(xué)高考仿真模擬化學(xué)試卷含解析
- 2024高中地理第3章地理信息技術(shù)應(yīng)用第4節(jié)數(shù)字地球精練含解析湘教版必修3
- 2024高中物理第二章交變電流第六節(jié)變壓器達(dá)標(biāo)作業(yè)含解析粵教版選修3-2
- 2024高中語文第一單元以意逆志知人論世湘夫人訓(xùn)練含解析新人教版選修中國古代詩歌散文欣賞
- 綿陽市高中2022級(2025屆)高三第二次診斷性考試(二診)歷史試卷(含答案)
- 《視頻壓縮基礎(chǔ)》課件
- 2025版工業(yè)制造工程墊資建設(shè)合同2篇
- 四年級數(shù)學(xué)(上)計算題專項練習(xí)及答案
- 期末測試卷(試題)-2024-2025學(xué)年四年級上冊數(shù)學(xué)滬教版
- GB/T 6672-2001塑料薄膜和薄片厚度測定機(jī)械測量法
- 醫(yī)院設(shè)計規(guī)范
- 停車場設(shè)計規(guī)范
- 會計職業(yè)道德案例分析PPT
- 防誤閉鎖裝置管理
- 37高炮專業(yè)教案講解
評論
0/150
提交評論