2021-2022學(xué)年重慶銅梁縣高三下學(xué)期第一次聯(lián)考數(shù)學(xué)試卷含解析_第1頁(yè)
2021-2022學(xué)年重慶銅梁縣高三下學(xué)期第一次聯(lián)考數(shù)學(xué)試卷含解析_第2頁(yè)
2021-2022學(xué)年重慶銅梁縣高三下學(xué)期第一次聯(lián)考數(shù)學(xué)試卷含解析_第3頁(yè)
2021-2022學(xué)年重慶銅梁縣高三下學(xué)期第一次聯(lián)考數(shù)學(xué)試卷含解析_第4頁(yè)
2021-2022學(xué)年重慶銅梁縣高三下學(xué)期第一次聯(lián)考數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2021-2022高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2答題前,認(rèn)真閱讀答題紙上的注意事項(xiàng),按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1甲在微信群中發(fā)了一個(gè)6元“拼手氣”紅包,被乙丙丁三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則乙獲得“最佳手氣”(即乙領(lǐng)到的錢(qián)數(shù)多于其他任何人)的概率是( )ABCD2已知函數(shù)(其中,)的圖象關(guān)于點(diǎn)成中心對(duì)稱(chēng),且與點(diǎn)相鄰的一個(gè)最低點(diǎn)為,

2、則對(duì)于下列判斷:直線(xiàn)是函數(shù)圖象的一條對(duì)稱(chēng)軸;點(diǎn)是函數(shù)的一個(gè)對(duì)稱(chēng)中心;函數(shù)與的圖象的所有交點(diǎn)的橫坐標(biāo)之和為.其中正確的判斷是( )ABCD3拋物線(xiàn)的焦點(diǎn)為,準(zhǔn)線(xiàn)為,是拋物線(xiàn)上的兩個(gè)動(dòng)點(diǎn),且滿(mǎn)足,設(shè)線(xiàn)段的中點(diǎn)在上的投影為,則的最大值是( )ABCD4正方體,是棱的中點(diǎn),在任意兩個(gè)中點(diǎn)的連線(xiàn)中,與平面平行的直線(xiàn)有幾條( )A36B21C12D65已知半徑為2的球內(nèi)有一個(gè)內(nèi)接圓柱,若圓柱的高為2,則球的體積與圓柱的體積的比為( )ABCD6對(duì)于定義在上的函數(shù),若下列說(shuō)法中有且僅有一個(gè)是錯(cuò)誤的,則錯(cuò)誤的一個(gè)是( )A在上是減函數(shù)B在上是增函數(shù)C不是函數(shù)的最小值D對(duì)于,都有7已知數(shù)列an滿(mǎn)足a1=3,且a

3、n+1=4an+3 (nN*),則數(shù)列an的通項(xiàng)公式為( )A22n-1+1B22n-1-1C22n+1D22n-18若執(zhí)行如圖所示的程序框圖,則輸出的值是( )ABCD49已知雙曲線(xiàn)的左、右焦點(diǎn)分別為、,拋物線(xiàn)與雙曲線(xiàn)有相同的焦點(diǎn).設(shè)為拋物線(xiàn)與雙曲線(xiàn)的一個(gè)交點(diǎn),且,則雙曲線(xiàn)的離心率為( )A或B或C或D或10已知雙曲線(xiàn)的焦距是虛軸長(zhǎng)的2倍,則雙曲線(xiàn)的漸近線(xiàn)方程為( )ABCD11已知為拋物線(xiàn)的焦點(diǎn),點(diǎn)在拋物線(xiàn)上,且,過(guò)點(diǎn)的動(dòng)直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),為坐標(biāo)原點(diǎn),拋物線(xiàn)的準(zhǔn)線(xiàn)與軸的交點(diǎn)為.給出下列四個(gè)命題:在拋物線(xiàn)上滿(mǎn)足條件的點(diǎn)僅有一個(gè);若是拋物線(xiàn)準(zhǔn)線(xiàn)上一動(dòng)點(diǎn),則的最小值為;無(wú)論過(guò)點(diǎn)的直線(xiàn)在什么位

4、置,總有;若點(diǎn)在拋物線(xiàn)準(zhǔn)線(xiàn)上的射影為,則三點(diǎn)在同一條直線(xiàn)上.其中所有正確命題的個(gè)數(shù)為( )A1B2C3D412復(fù)數(shù) (i為虛數(shù)單位)的共軛復(fù)數(shù)是A1+iB1iC1+iD1i二、填空題:本題共4小題,每小題5分,共20分。13設(shè)滿(mǎn)足約束條件,則目標(biāo)函數(shù)的最小值為_(kāi).14若函數(shù)滿(mǎn)足:是偶函數(shù);的圖象關(guān)于點(diǎn)對(duì)稱(chēng).則同時(shí)滿(mǎn)足的,的一組值可以分別是_.15某種賭博每局的規(guī)則是:賭客先在標(biāo)記有1,2,3,4,5的卡片中隨機(jī)摸取一張,將卡片上的數(shù)字作為其賭金;隨后放回該卡片,再隨機(jī)摸取兩張,將這兩張卡片上數(shù)字之差的絕對(duì)值的1.4倍作為其獎(jiǎng)金若隨機(jī)變量1和2分別表示賭客在一局賭博中的賭金和獎(jiǎng)金,則D(1)_,

5、E(1)E(2)_16在平面直角坐標(biāo)系xOy中,A,B為x軸正半軸上的兩個(gè)動(dòng)點(diǎn),P(異于原點(diǎn)O)為y軸上的一個(gè)定點(diǎn)若以AB為直徑的圓與圓x2(y2)21相外切,且APB的大小恒為定值,則線(xiàn)段OP的長(zhǎng)為_(kāi)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)已知函數(shù).(1)當(dāng)a=2時(shí),求不等式的解集;(2)設(shè)函數(shù).當(dāng)時(shí),求的取值范圍.18(12分)已知拋物線(xiàn)的準(zhǔn)線(xiàn)過(guò)橢圓C:(ab0)的左焦點(diǎn)F,且點(diǎn)F到直線(xiàn)l:(c為橢圓焦距的一半)的距離為4.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)F做直線(xiàn)與橢圓C交于A,B兩點(diǎn),P是AB的中點(diǎn),線(xiàn)段AB的中垂線(xiàn)交直線(xiàn)l于點(diǎn)Q.若,求直線(xiàn)AB的

6、方程.19(12分)如圖,在四棱錐中,平面平面ABCD,底面ABCD是邊長(zhǎng)為2的菱形,點(diǎn)E,F(xiàn)分別為棱DC,BC的中點(diǎn),點(diǎn)G是棱SC靠近點(diǎn)C的四等分點(diǎn).求證:(1)直線(xiàn)平面EFG;(2)直線(xiàn)平面SDB.20(12分)如圖,四棱錐中,四邊形是矩形,為正三角形,且平面平面,、分別為、的中點(diǎn).(1)證明:平面平面;(2)求二面角的余弦值.21(12分)某藝術(shù)品公司欲生產(chǎn)一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內(nèi)接圓錐組成,圓錐的側(cè)面用于藝術(shù)裝飾,如圖1.為了便于設(shè)計(jì),可將該禮品看成是由圓及其內(nèi)接等腰三角形繞底邊上的高所在直線(xiàn)旋轉(zhuǎn)180而成,如圖2.已知圓的半徑為,設(shè),圓錐的側(cè)面積為.(1)求關(guān)

7、于的函數(shù)關(guān)系式;(2)為了達(dá)到最佳觀賞效果,要求圓錐的側(cè)面積最大.求取得最大值時(shí)腰的長(zhǎng)度.22(10分)已知橢圓與x軸負(fù)半軸交于,離心率.(1)求橢圓C的方程;(2)設(shè)直線(xiàn)與橢圓C交于兩點(diǎn),連接AM,AN并延長(zhǎng)交直線(xiàn)x=4于兩點(diǎn),若,直線(xiàn)MN是否恒過(guò)定點(diǎn),如果是,請(qǐng)求出定點(diǎn)坐標(biāo),如果不是,請(qǐng)說(shuō)明理由.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1B【解析】將所有可能的情況全部枚舉出來(lái),再根據(jù)古典概型的方法求解即可.【詳解】設(shè)乙,丙,丁分別領(lǐng)到x元,y元,z元,記為,則基本事件有,共10個(gè),其中符合乙獲得“最佳手氣”的有3個(gè),故所

8、求概率為,故選:B.【點(diǎn)睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎(chǔ)題型.2C【解析】分析:根據(jù)最低點(diǎn),判斷A=3,根據(jù)對(duì)稱(chēng)中心與最低點(diǎn)的橫坐標(biāo)求得周期T,再代入最低點(diǎn)可求得解析式為,依次判斷各選項(xiàng)的正確與否詳解:因?yàn)闉閷?duì)稱(chēng)中心,且最低點(diǎn)為,所以A=3,且 由 所以,將帶入得 ,所以由此可得錯(cuò)誤,正確,當(dāng)時(shí),所以與 有6個(gè)交點(diǎn),設(shè)各個(gè)交點(diǎn)坐標(biāo)依次為 ,則,所以正確所以選C點(diǎn)睛:本題考查了根據(jù)條件求三角函數(shù)的解析式,通過(guò)求得的解析式進(jìn)一步研究函數(shù)的性質(zhì),屬于中檔題3B【解析】試題分析:設(shè)在直線(xiàn)上的投影分別是,則,又是中點(diǎn),所以,則,在中,所以,即,所以,故選B考點(diǎn):拋物線(xiàn)的性質(zhì)【名師點(diǎn)晴】

9、在直線(xiàn)與拋物線(xiàn)的位置關(guān)系問(wèn)題中,涉及到拋物線(xiàn)上的點(diǎn)到焦點(diǎn)的距離,焦點(diǎn)弦長(zhǎng),拋物線(xiàn)上的點(diǎn)到準(zhǔn)線(xiàn)(或與準(zhǔn)線(xiàn)平行的直線(xiàn))的距離時(shí),常??紤]用拋物線(xiàn)的定義進(jìn)行問(wèn)題的轉(zhuǎn)化象本題弦的中點(diǎn)到準(zhǔn)線(xiàn)的距離首先等于兩點(diǎn)到準(zhǔn)線(xiàn)距離之和的一半,然后轉(zhuǎn)化為兩點(diǎn)到焦點(diǎn)的距離,從而與弦長(zhǎng)之間可通過(guò)余弦定理建立關(guān)系4B【解析】先找到與平面平行的平面,利用面面平行的定義即可得到.【詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【點(diǎn)睛】本題考查線(xiàn)面平行的判定定理以及面面平行的定義,涉及到了簡(jiǎn)單的組合問(wèn)題,是一中檔題.5D【解析】分別求出球和圓柱的體積,然后可得比值.【詳解】設(shè)圓柱的底面圓半徑為,則,所以圓柱的體積.又球

10、的體積,所以球的體積與圓柱的體積的比,故選D.【點(diǎn)睛】本題主要考查幾何體的體積求解,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).6B【解析】根據(jù)函數(shù)對(duì)稱(chēng)性和單調(diào)性的關(guān)系,進(jìn)行判斷即可【詳解】由得關(guān)于對(duì)稱(chēng),若關(guān)于對(duì)稱(chēng),則函數(shù)在上不可能是單調(diào)的,故錯(cuò)誤的可能是或者是,若錯(cuò)誤,則在,上是減函數(shù),在在上是增函數(shù),則為函數(shù)的最小值,與矛盾,此時(shí)也錯(cuò)誤,不滿(mǎn)足條件故錯(cuò)誤的是,故選:【點(diǎn)睛】本題主要考查函數(shù)性質(zhì)的綜合應(yīng)用,結(jié)合對(duì)稱(chēng)性和單調(diào)性的關(guān)系是解決本題的關(guān)鍵7D【解析】試題分析:因?yàn)閍n+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1=4,所以數(shù)列an+1是以a1+1=4為首項(xiàng),公比為4的等比

11、數(shù)列,所以an+1=44n-1=4n=22n,即an=22n-1,所以數(shù)列an的通項(xiàng)公式是an=22n-1,故選D考點(diǎn):數(shù)列的通項(xiàng)公式8D【解析】模擬程序運(yùn)行,觀察變量值的變化,得出的變化以4為周期出現(xiàn),由此可得結(jié)論【詳解】;如此循環(huán)下去,當(dāng)時(shí),此時(shí)不滿(mǎn)足,循環(huán)結(jié)束,輸出的值是4.故選:D【點(diǎn)睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu)解題時(shí)模擬程序運(yùn)行,觀察變量值的變化,確定程序功能,可得結(jié)論9D【解析】設(shè),根據(jù)和拋物線(xiàn)性質(zhì)得出,再根據(jù)雙曲線(xiàn)性質(zhì)得出,最后根據(jù)余弦定理列方程得出、間的關(guān)系,從而可得出離心率【詳解】過(guò)分別向軸和拋物線(xiàn)的準(zhǔn)線(xiàn)作垂線(xiàn),垂足分別為、,不妨設(shè),則,為雙曲線(xiàn)上的點(diǎn),則,即,得,又,

12、在中,由余弦定理可得,整理得,即,解得或.故選:D.【點(diǎn)睛】本題考查了雙曲線(xiàn)離心率的求解,涉及雙曲線(xiàn)和拋物線(xiàn)的簡(jiǎn)單性質(zhì),考查運(yùn)算求解能力,屬于中檔題10A【解析】根據(jù)雙曲線(xiàn)的焦距是虛軸長(zhǎng)的2倍,可得出,結(jié)合,得出,即可求出雙曲線(xiàn)的漸近線(xiàn)方程.【詳解】解:由雙曲線(xiàn)可知,焦點(diǎn)在軸上,則雙曲線(xiàn)的漸近線(xiàn)方程為:,由于焦距是虛軸長(zhǎng)的2倍,可得:,即:,所以雙曲線(xiàn)的漸近線(xiàn)方程為:.故選:A.【點(diǎn)睛】本題考查雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì),以及雙曲線(xiàn)的漸近線(xiàn)方程.11C【解析】:由拋物線(xiàn)的定義可知,從而可求 的坐標(biāo);:做關(guān)于準(zhǔn)線(xiàn)的對(duì)稱(chēng)點(diǎn)為,通過(guò)分析可知當(dāng)三點(diǎn)共線(xiàn)時(shí)取最小值,由兩點(diǎn)間的距離公式,可求此時(shí)最小值;:設(shè)出直

13、線(xiàn)方程,聯(lián)立直線(xiàn)與拋物線(xiàn)方程,結(jié)合韋達(dá)定理,可知焦點(diǎn)坐標(biāo)的關(guān)系,進(jìn)而可求,從而可判斷出的關(guān)系;:計(jì)算直線(xiàn) 的斜率之差,可得兩直線(xiàn)斜率相等,進(jìn)而可判斷三點(diǎn)在同一條直線(xiàn)上.【詳解】解:對(duì)于,設(shè),由拋物線(xiàn)的方程得,則, 故,所以或,所以滿(mǎn)足條件的點(diǎn)有二個(gè),故不正確; 對(duì)于,不妨設(shè),則關(guān)于準(zhǔn)線(xiàn)的對(duì)稱(chēng)點(diǎn)為, 故,當(dāng)且僅當(dāng)三點(diǎn)共線(xiàn)時(shí)等號(hào)成立,故正確; 對(duì)于,由題意知, ,且的斜率不為0,則設(shè)方程為:,設(shè)與拋物線(xiàn)的交點(diǎn)坐標(biāo)為,聯(lián)立直線(xiàn)與拋物線(xiàn)的方程為, ,整理得,則,所以, 則.故的傾斜角互補(bǔ),所以,故正確.對(duì)于,由題意知 ,由知,則 ,由,知,即三點(diǎn)在同一條直線(xiàn)上,故正確.故選:C.【點(diǎn)睛】本題考查了拋物

14、線(xiàn)的定義,考查了直線(xiàn)與拋物線(xiàn)的位置關(guān)系,考查了拋物線(xiàn)的性質(zhì),考查了直線(xiàn)方程,考查了兩點(diǎn)的斜率公式.本題的難點(diǎn)在于第二個(gè)命題,結(jié)合初中的“飲馬問(wèn)題”分析出何時(shí)取最小值.12B【解析】分析:化簡(jiǎn)已知復(fù)數(shù)z,由共軛復(fù)數(shù)的定義可得詳解:化簡(jiǎn)可得z= z的共軛復(fù)數(shù)為1i.故選B點(diǎn)睛:本題考查復(fù)數(shù)的代數(shù)形式的運(yùn)算,涉及共軛復(fù)數(shù),屬基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13【解析】根據(jù)滿(mǎn)足約束條件,畫(huà)出可行域,將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線(xiàn),找到直線(xiàn)在軸上截距最小時(shí)的點(diǎn),此時(shí),目標(biāo)函數(shù) 取得最小值.【詳解】由滿(mǎn)足約束條件,畫(huà)出可行域如圖所示陰影部分:將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線(xiàn),找到直線(xiàn)在軸上

15、截距最小時(shí)的點(diǎn) 此時(shí),目標(biāo)函數(shù) 取得最小值,最小值為故答案為:-1【點(diǎn)睛】本題主要考查線(xiàn)性規(guī)劃求最值,還考查了數(shù)形結(jié)合的思想方法,屬于基礎(chǔ)題.14,【解析】根據(jù)是偶函數(shù)和的圖象關(guān)于點(diǎn)對(duì)稱(chēng),即可求出滿(mǎn)足條件的和.【詳解】由是偶函數(shù)及,可取,則,由的圖象關(guān)于點(diǎn)對(duì)稱(chēng),得,即,可取.故,的一組值可以分別是,.故答案為:,.【點(diǎn)睛】本題主要考查了正弦型三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.152 0.2 【解析】分別求出隨機(jī)變量1和2的分布列,根據(jù)期望和方差公式計(jì)算得解.【詳解】設(shè)a,b1,2,1,4,5,則p(1a),其1分布列為:1 1 2 1 4 5 P E(1)(1+2+1+4+5)1D(1)(11)2+

16、(21)2+(11)2+(41)2+(51)2221.4|ab|的可能取值分別為:1.4,2.3,4.2,5.6,P(21.4),P(22.3),P(24.2),P(25.6),可得分布列2 1.4 2.3 4.2 5.6 P E(2)1.42.34.25.62.3E(1)E(2)0.2故答案為:2,0.2【點(diǎn)睛】此題考查隨機(jī)變量及其分布,關(guān)鍵在于準(zhǔn)確求出隨機(jī)變量取值的概率,根據(jù)公式準(zhǔn)確計(jì)算期望和方差.16【解析】分析:設(shè)O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),利用差角的正切公式,結(jié)合以AB為直徑的圓與圓x2+(y-2)2=1相外切且APB的大小恒為定值,即可求出線(xiàn)段OP的

17、長(zhǎng)詳解:設(shè)O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),則APB的大小恒為定值,t,|OP|=故答案為點(diǎn)睛:本題考查圓與圓的位置關(guān)系,考查差角的正切公式,考查學(xué)生的計(jì)算能力,屬于中檔題三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(1);(2)【解析】試題分析:(1)當(dāng)時(shí);(2)由等價(jià)于,解之得.試題解析: (1)當(dāng)時(shí),.解不等式,得.因此,的解集為.(2)當(dāng)時(shí),當(dāng)時(shí)等號(hào)成立,所以當(dāng)時(shí),等價(jià)于. 當(dāng)時(shí),等價(jià)于,無(wú)解.當(dāng)時(shí),等價(jià)于,解得.所以的取值范圍是.考點(diǎn):不等式選講.18(1);(2)或.【解析】(1)由拋物線(xiàn)的準(zhǔn)線(xiàn)方程求出的值,確定左焦點(diǎn)坐標(biāo),再由點(diǎn)F到

18、直線(xiàn)l:的距離為4,求出即可;(2)設(shè)直線(xiàn)方程,與橢圓方程聯(lián)立,運(yùn)用根與系數(shù)關(guān)系和弦長(zhǎng)公式,以及兩直線(xiàn)垂直的條件和中點(diǎn)坐標(biāo)公式,即可得到所求直線(xiàn)的方程.【詳解】(1)拋物線(xiàn)的準(zhǔn)線(xiàn)方程為,直線(xiàn),點(diǎn)F到直線(xiàn)l的距離為,所以橢圓的標(biāo)準(zhǔn)方程為;(2)依題意斜率不為0,又過(guò)點(diǎn),設(shè)方程為,聯(lián)立,消去得,設(shè),線(xiàn)段AB的中垂線(xiàn)交直線(xiàn)l于點(diǎn)Q,所以橫坐標(biāo)為3,平方整理得,解得或(舍去),所求的直線(xiàn)方程為或.【點(diǎn)睛】本題考查橢圓的方程以及直線(xiàn)與橢圓的位置關(guān)系,要熟練應(yīng)用根與系數(shù)關(guān)系、相交弦長(zhǎng)公式,合理運(yùn)用兩點(diǎn)間的距離公式,考查計(jì)算求解能力,屬于中檔題.19(1)見(jiàn)解析(2)見(jiàn)解析【解析】(1) 連接AC、BD交于

19、點(diǎn)O,交EF于點(diǎn)H,連接GH,再證明即可.(2)證明與即可.【詳解】(1)連接AC、BD交于點(diǎn)O,交EF于點(diǎn)H,連接GH,所以O(shè)為AC的中點(diǎn),H為OC的中點(diǎn),由E、F為DC、BC的中點(diǎn),再由題意可得,所以在三角形CAS中,平面EFG,平面EFG,所以直線(xiàn)平面EFG. (2)在中,由余弦定理得,即,解得,由勾股定理逆定理可知,因?yàn)閭?cè)面底面ABCD,由面面垂直的性質(zhì)定理可知平面ABCD,所以,因?yàn)榈酌鍭BCD是菱形,所以,因?yàn)?所以平面SDB.【點(diǎn)睛】本題考查線(xiàn)面平行與垂直的證明.需要根據(jù)題意利用等比例以及余弦定理勾股定理等證明.屬于中檔題.20(1)見(jiàn)解析;(2)【解析】(1)取中點(diǎn),中點(diǎn),連接,.設(shè)交于,則為的中點(diǎn),連接.通過(guò)證明,證得平面,由此證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的余弦值.【詳解】(1)取中點(diǎn),中點(diǎn),連接,.設(shè)交于,則為的中點(diǎn),連接.設(shè),則,.由已知,平

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論