振動(dòng)力學(xué)第8章第3、4、5節(jié)_第1頁(yè)
振動(dòng)力學(xué)第8章第3、4、5節(jié)_第2頁(yè)
振動(dòng)力學(xué)第8章第3、4、5節(jié)_第3頁(yè)
振動(dòng)力學(xué)第8章第3、4、5節(jié)_第4頁(yè)
振動(dòng)力學(xué)第8章第3、4、5節(jié)_第5頁(yè)
已閱讀5頁(yè),還剩49頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、 極限環(huán)或自激振動(dòng)是一種非線(xiàn)性現(xiàn)象。8.3 自激振動(dòng)自激振動(dòng) 極限環(huán)極限環(huán) 工程中有很多自激振動(dòng)的實(shí)例,如鐘表的擺、干摩擦自振、輸電線(xiàn)舞動(dòng)、管內(nèi)流體喘振、機(jī)翼的顫振、機(jī)床顫振和車(chē)輪制動(dòng)閘瓦的尖叫聲等。 經(jīng)典的皮帶問(wèn)題如圖8.3-1(a)所示,皮帶以等速v移動(dòng),在適當(dāng)條件下,此質(zhì)量-彈簧系統(tǒng)可能為動(dòng)力不穩(wěn)定;圖8.3-1(b)表示棒在穩(wěn)定流場(chǎng)中的可能振動(dòng)。圖 8.3-1這些例子說(shuō)明:一個(gè)非線(xiàn)性系統(tǒng)在一個(gè)常數(shù)激勵(lì)作用下,可能產(chǎn)生周期振動(dòng)。 1. 自激振動(dòng)自激振動(dòng) 所謂的自激振動(dòng)是系統(tǒng)內(nèi)部的非振動(dòng)的能量轉(zhuǎn)換為振動(dòng)的激勵(lì)而產(chǎn)生的振動(dòng)。 對(duì)于自激振動(dòng)可以做如下的物理解釋?zhuān)?存在一個(gè)與系統(tǒng)有關(guān)的外部恒定的

2、能源,自激振動(dòng)靠系統(tǒng)外部的來(lái)源補(bǔ)充能量,使運(yùn)動(dòng)的系統(tǒng)與恒定能源之間產(chǎn)生交變力,這個(gè)交變力在運(yùn)動(dòng)方程中體現(xiàn)為阻尼項(xiàng)。當(dāng)系統(tǒng)振動(dòng)較小時(shí),方程中的阻尼項(xiàng)成為負(fù)阻尼,使系統(tǒng)周期性地從恒定能源吸收能量而使運(yùn)動(dòng)增長(zhǎng);當(dāng)運(yùn)動(dòng)增長(zhǎng)到一定程度,方程中的阻尼項(xiàng)成為正阻尼而使運(yùn)動(dòng)衰減。當(dāng)系統(tǒng)在一個(gè)周期內(nèi)損失的能量和吸入的能量相等時(shí),系統(tǒng)呈現(xiàn)穩(wěn)態(tài)的周期運(yùn)動(dòng)。這種的穩(wěn)態(tài)周期運(yùn)動(dòng)就稱(chēng)為自激振動(dòng),或簡(jiǎn)稱(chēng)自振。 線(xiàn)性系統(tǒng)不可能產(chǎn)生自激振動(dòng),能產(chǎn)生自激振動(dòng)的系統(tǒng)必為非線(xiàn)性系統(tǒng)。前面介紹的范德波方程和瑞利方程所代表的振動(dòng)都屬于自激振動(dòng)。 自激振動(dòng)與保守系統(tǒng)的自由振動(dòng)不相同。保守系統(tǒng)的自由振動(dòng)的振幅由初始條件確定,而自激振動(dòng)的振幅

3、與初始條件無(wú)關(guān),它決定于系統(tǒng)本身的參數(shù)。 自激振動(dòng)由于能源恒定而不同于強(qiáng)迫振動(dòng)。系統(tǒng)依靠自身運(yùn)動(dòng)狀態(tài)的反饋?zhàn)饔谜{(diào)節(jié)能量輸入,以維持不衰減的持續(xù)振動(dòng)。也就是說(shuō),在自激振動(dòng)中,外界恒定的能源給予振動(dòng)系統(tǒng)的交變力是由運(yùn)動(dòng)本身產(chǎn)生或控制的,運(yùn)動(dòng)一旦停止,交變力也隨之消失。而在強(qiáng)迫振動(dòng)中,交變力是由外部能源獨(dú)立產(chǎn)生的,它不依賴(lài)于運(yùn)動(dòng),即使運(yùn)動(dòng)消失了,交變力仍可存在。這樣,強(qiáng)迫振動(dòng)的頻率完全決定于外加激勵(lì)頻率,而自激振動(dòng)的頻率則很接近于系統(tǒng)的固有頻率。 例例8.3-1 分析電鈴(圖8.3-2)的自激振動(dòng)。 通電后鈴錘在電磁力的作用下產(chǎn)生位移敲擊銅鈴,同時(shí)使電路斷開(kāi),鈴錘在彈簧恢復(fù)力作用下回到原處,如此往復(fù)

4、循環(huán)以產(chǎn)生持久的自激振動(dòng)。 解:解:電鈴的鈴錘和彈簧片組成了振動(dòng)系統(tǒng),電源為恒定的能源,電磁斷續(xù)器為調(diào)節(jié)器。圖 8.3-2 例例 8.3-2 分析蒸汽機(jī)(圖8.3-3)的自激振動(dòng)。蒸汽推動(dòng)活塞,并通過(guò)連桿帶動(dòng)飛輪轉(zhuǎn)動(dòng),同時(shí)使配汽閥移動(dòng)以改變進(jìn)汽方向,使蒸汽朝相反的方向推動(dòng)活塞?;钊谡羝耐鶑?fù)推動(dòng)下的運(yùn)動(dòng)帶動(dòng)飛輪作持久的轉(zhuǎn)動(dòng)。 解:解:蒸汽機(jī)的活塞、連桿和飛輪組成了振動(dòng)系統(tǒng),鍋爐供應(yīng)的蒸汽為恒定能源,配汽閥為調(diào)節(jié)器。圖 8.3-3 2. 自激振動(dòng)的特征自激振動(dòng)的特征 (1)振動(dòng)過(guò)程中,存在能量的輸入與耗散,因此自振系統(tǒng)為非保守系統(tǒng)。 (2)能源恒定,能量的輸入僅受運(yùn)動(dòng)狀態(tài),即振動(dòng)系統(tǒng)的位移和速

5、度的調(diào)節(jié),因此自振系統(tǒng)不顯含時(shí)間變量,為自治系統(tǒng)。 (3)振動(dòng)的特征量,如頻率和振幅,由系統(tǒng)的物理參數(shù)確定,與初始條件無(wú)關(guān)。 (4)自治的線(xiàn)性系統(tǒng)只能產(chǎn)生衰減自由振動(dòng),無(wú)耗散時(shí)也只能產(chǎn)生振幅由初始條件確定的等幅自由振動(dòng)。因此自振系統(tǒng)必為非線(xiàn)性系統(tǒng)。 (5)自激振動(dòng)的穩(wěn)定性取決于能量的輸入與耗散的相互關(guān)系。若振幅偏離穩(wěn)態(tài)值時(shí),能量的增減能促使振幅回至穩(wěn)態(tài)值,則自激振動(dòng)穩(wěn)定(圖8.3-4a)。反之,自激振動(dòng)不穩(wěn)定(圖8.3-4b)。圖 8.3-4 3. 極限環(huán)極限環(huán) 自激振動(dòng)是穩(wěn)態(tài)的周期性運(yùn)動(dòng),所以它在相平面上的相軌線(xiàn)構(gòu)成一條封閉的軌跡,相平面內(nèi)的封閉相軌跡與實(shí)際系統(tǒng)的周期運(yùn)動(dòng)相對(duì)應(yīng)。保守系統(tǒng)在穩(wěn)

6、定平衡位置附近的等幅自由振動(dòng)對(duì)應(yīng)于相平面內(nèi)圍繞中心奇點(diǎn)的封閉相軌跡族,在密集的封閉相軌跡族中,實(shí)際相軌跡的振幅由初始運(yùn)動(dòng)狀態(tài)確定。 在封閉曲線(xiàn)周?chē)紳M(mǎn)了螺線(xiàn)型的相軌跡逐漸地趨近極限環(huán),它們或者盤(pán)向極限環(huán),或者盤(pán)向奇點(diǎn)。 自激振動(dòng)是一種特殊的周期運(yùn)動(dòng),它的振幅和頻率由系統(tǒng)的物理參數(shù)唯一確定,與初始運(yùn)動(dòng)狀態(tài)無(wú)關(guān)。 因此自激振動(dòng)在相平面內(nèi)的相軌跡是孤立的封閉曲線(xiàn),龐加萊(Poincare)稱(chēng)此閉軌跡為極限環(huán)。 反之,若擾動(dòng)后的相軌跡遠(yuǎn)離極限環(huán),其中只要有一側(cè)的相軌線(xiàn)是離開(kāi)極限環(huán)的,則這樣的極限環(huán)稱(chēng)為不穩(wěn)定的,如圖8.3-5中的M1和M3。 圖 8.3-5 極限環(huán)又有穩(wěn)定的和不穩(wěn)定之分。如果極限環(huán)兩側(cè)

7、的相軌線(xiàn)都趨近于它,既當(dāng)相點(diǎn)由于擾動(dòng)偏離極限環(huán)后,即沿新的相軌跡運(yùn)動(dòng),若擾動(dòng)后的相軌跡仍漸近地貼近極限環(huán),則稱(chēng)極限環(huán)是穩(wěn)定的如圖8.3-5中的M2。 自激振動(dòng)在各種技術(shù)問(wèn)題中占有極重要的地位,因此確定極限環(huán)的存在及其穩(wěn)定性就成為非線(xiàn)性自治系統(tǒng)理論中的一個(gè)重要問(wèn)題。從上面的定性分析可知,極限環(huán)的存在是明顯的,但是對(duì)于一個(gè)給定的系統(tǒng)要想從理論上證實(shí)極限環(huán)的存在并具體地找到該極限環(huán)卻是困難的。在很多情況下,問(wèn)題的解決還是要借助于圖解法。 不穩(wěn)定的極限環(huán)是實(shí)際系統(tǒng)不能實(shí)現(xiàn)的運(yùn)動(dòng),它是用幾何作圖法畫(huà)不出來(lái)的。穩(wěn)定的極限環(huán)對(duì)應(yīng)于系統(tǒng)的穩(wěn)態(tài)周期運(yùn)動(dòng),即自激振動(dòng)。 一個(gè)具有極限環(huán)系統(tǒng)的經(jīng)典例子是范德波振子。這

8、個(gè)例子可以說(shuō)明極限環(huán)的一些性質(zhì)。 范德波振子是由下面的微分方程所描述,即210 0 xxxx (8.3-1)上式可認(rèn)為是一個(gè)具有可變阻尼的振子。確實(shí), 這一項(xiàng)可以看成一個(gè)與振幅相關(guān)的阻尼系數(shù)。對(duì)于|x|1它是正的。因此當(dāng)運(yùn)動(dòng)在|x|1時(shí)正阻尼有助于減小振幅,所以預(yù)期會(huì)有極限環(huán)而且確實(shí)得到了極限環(huán)。12x2122112, 10 xxxxxx (8.3-2)顯然,原點(diǎn)是一個(gè)平衡點(diǎn)。為了了解這個(gè)平衡點(diǎn)的性質(zhì),列出下面線(xiàn)性化系統(tǒng)的系數(shù)矩陣110a(8.3-3)有根122221 (8.3-5)它導(dǎo)致特征方程012(8.3-4) 令 則方程(8.3-1)可以用兩個(gè)一階微分方程來(lái)代替12, ,xxxx 當(dāng)2

9、時(shí)根1與2都是正實(shí)數(shù),所以原點(diǎn)是不穩(wěn)定結(jié)點(diǎn)。另一方面,當(dāng)2時(shí)根1與2是具有正實(shí)部的共軛復(fù)數(shù),所以這個(gè)原點(diǎn)是不穩(wěn)定焦點(diǎn)。不管怎么樣,原點(diǎn)是不穩(wěn)定平衡點(diǎn),而在它鄰域內(nèi)開(kāi)始的任何運(yùn)動(dòng)趨向于離開(kāi)這個(gè)鄰域而達(dá)到極限環(huán)。 為得到軌跡的方程,把式(8.3-2)的第二式除以第一式,結(jié)果有2121121ddxxxxx(8.3-6)要求得上式的一個(gè)封閉解是不可能的。 軌線(xiàn)可以用某種圖解方法來(lái)求得,例如用等傾線(xiàn)法,或者用計(jì)算機(jī)摸擬。圖8.3-6給出了對(duì)=0.2和=1.0的值用計(jì)算機(jī)摸擬求得的極限環(huán)。圖 8.3-6 可見(jiàn),一個(gè)穩(wěn)定的極限環(huán)包圍一個(gè)不穩(wěn)定平衡點(diǎn),而一個(gè)不穩(wěn)定極限環(huán)包圍了一個(gè)穩(wěn)定平衡點(diǎn)。 注意到,當(dāng)0時(shí)則

10、是軌道漸近穩(wěn)定的。q 從圖8.3-6顯然可見(jiàn)極限環(huán)的形狀決定于參數(shù)。事實(shí)上,當(dāng)0極限環(huán)趨于一個(gè)圓。因?yàn)樗熊壽E不論從外面或從里面都趨近于極限環(huán),所以這極限環(huán)是穩(wěn)定的。 對(duì)于0的情況線(xiàn)性化分析會(huì)判定不穩(wěn)定,其運(yùn)動(dòng)要無(wú)限增大??刂普穹笮〉氖欠蔷€(xiàn)性,即 。在這種情形,恰當(dāng)?shù)木€(xiàn)性化必須在極限環(huán)的附近,這樣會(huì)得出一個(gè)帶有周期性系數(shù)的線(xiàn)性系統(tǒng)。xx 2q 最后,必須指出,對(duì)于呈現(xiàn)有極限環(huán)的系統(tǒng),在其原點(diǎn)周?chē)镁€(xiàn)性化分析是不適當(dāng)?shù)摹?攝動(dòng)方法是針對(duì)所謂弱非線(xiàn)性系統(tǒng)的漸近的解析法,也稱(chēng)為小參數(shù)法,它是求解非線(xiàn)性振動(dòng)方程最有效的方法之一,是由龐加萊和李亞普諾夫所擬定、在解決各種問(wèn)題時(shí)廣泛應(yīng)用的方法,其基本做法

11、是把解展開(kāi)成小參數(shù)的冪級(jí)數(shù),以尋求滿(mǎn)足一定誤差要求的漸近解。8.4 基本的攝動(dòng)方法基本的攝動(dòng)方法 求解非線(xiàn)性振動(dòng)的攝動(dòng)法中有各種漸近的解析方法,包括基本攝動(dòng)法和各種奇異攝動(dòng)法。奇異攝動(dòng)法主要包括林斯泰特法和KBM法等。非線(xiàn)性振動(dòng)的許多特性都可以用攝動(dòng)漸近解描述出來(lái)。 描述物理系統(tǒng)的微分方程,可分為一部分只包含常系數(shù)的線(xiàn)性項(xiàng),另一部分與前者相比是微小的非線(xiàn)性項(xiàng)(自治的或非自治的),其微分方程為如下形式t , x , xfxx 20(8.4-1)式中為一個(gè)小參數(shù),函數(shù)f是關(guān)于x和 解析的非線(xiàn)性函數(shù),也可以與時(shí)間t有關(guān)。這樣的系統(tǒng)稱(chēng)為弱非線(xiàn)性系統(tǒng),相應(yīng)地方程(8.4-1)稱(chēng)為弱非線(xiàn)性方程,使系統(tǒng)成為

12、非線(xiàn)性的微小項(xiàng)稱(chēng)為攝動(dòng)項(xiàng)。 x 020 xx (8.4-3)如果f中不顯含時(shí)間t,則得到弱非線(xiàn)性自治方程 x , xfxx 20 (8.4-2)這是大家所熟知的最簡(jiǎn)單的無(wú)阻尼單自由度線(xiàn)性振動(dòng)問(wèn)題,0為固有頻率。 設(shè)有弱非線(xiàn)性自治系統(tǒng)由微分方程(8.4-2)所描述。當(dāng)=0時(shí),此方程成為 方程(8.4-2)的解除了依賴(lài)于時(shí)間t還依賴(lài)于小參數(shù),通常方程(8.4-2)沒(méi)有精確解,根據(jù)龐加萊展開(kāi)定理,解x(t,)可以展開(kāi)為的冪級(jí)數(shù)的形式,即 txtxtx, tx2210(8.4-4)式中函數(shù)xi(t)( )為各階漸近解,是時(shí)間t的函數(shù)而與無(wú)關(guān)。x0(t)是方程(8.4-2)當(dāng)=0時(shí)的解,即方程(8.4-

13、3)的解,稱(chēng)為零次漸近解或母解。,2, 1 ,0i 把式(8.4-4)代入式(8.4-2)的左端,有2222001200122222000101202xxxxxxxxxxxxxx(8.4-5)0000002222200022,122!f x xf xx xxfff x xxxxxfffxx xxxx xx (8.4-6)把式(8.4-4)代入式(8.4-2)的右端的 , 因?yàn)?是解析函數(shù),故可將它在母解 的鄰域展成泰勒級(jí)數(shù),即xxf,xxf,00,xx式中221212,xxxxxx (8.4-7)000011222222000002211 1122,112!2!fff x xf x xxxxx

14、fffffxxxx xxxxxx xx (8.4-8) 是指 在 取值,其余的類(lèi)同。將式(8.4-7)代入式(8.4-6),按的冪次整理得到xxxf,xf000 ,xxxx 將式(8.4-5)和式(8.4-8)同時(shí)代入式(8.4-2)得到22220001012022000011,xxxxxxfffxxxxxx(8.4-9)方程(8.4-9)必須對(duì)的一切值都成立,而且函數(shù)xi(t)( )與無(wú)關(guān),故方程(8.4-9)兩端同次冪的系數(shù)必須相等,這就得到方程組,2, 1i上面的每個(gè)方程都是線(xiàn)性方程。第一個(gè)方程(8.4-10a)無(wú)右端項(xiàng),可以直接寫(xiě)出它的解,其余各關(guān)于xi(t)(i=0,1,2,)的方程

15、,其右端所包含的變量與導(dǎo)數(shù)只到xi-1(t)與 為止,因此方程組(8.4-10)可依次求解。1ix 00200 xx (8.4-10a)001201, xxfxx (8.4-10b)10102202xxfxxfxx (8.4-10c) 2012201200000000 xxxxxxxx (8.4-11)可以取各階漸近解的初始條件為式(8.4-12)中各組初始條件可以決定方程(8.4-10)中各階漸近解的積分常數(shù)。 0000 , 00 1,2,00 , 00iixxxixxx (8.4-12) 上述各階漸近解均包含有積分常數(shù),這些積分常數(shù)的確定,可以由已給定的初始條件x(0)和 定出。把初始條件

16、按式(8.4-4)的形式展開(kāi)得 0 x 式(8.4-4)所表示的級(jí)數(shù)解稱(chēng)為方程(8.4-2)的形式解。龐加萊定理指出,只要小參數(shù)的模充分的小,級(jí)數(shù)就是收斂的。如果截取級(jí)數(shù)(8.4-4)的前n項(xiàng)作為n次漸近解,由此引起的截?cái)嗾`差與的(n+1)次冪同階。即滿(mǎn)足條件 12210O,nnntxtxtxtxtx(8.4-13)式中符號(hào)O(n+1)表示一個(gè)量級(jí)為n+1的小量,它是截?cái)嗾`差。式(8.4-13)所代表的意義是級(jí)數(shù)中的每一項(xiàng)只是它前面一項(xiàng)的微小修正。所以,當(dāng)?shù)哪3浞中r(shí),取漸近級(jí)數(shù)的開(kāi)頭幾項(xiàng)來(lái)表示解就有很好的近似。 但是對(duì)于一個(gè)實(shí)際問(wèn)題,小參數(shù)是有確定的值的,不可能任意地小,所以級(jí)數(shù)(8.4-4

17、)只能在自變量t的某個(gè)區(qū)間內(nèi)才能一致地滿(mǎn)足式(8.4-13)。也就是說(shuō)用級(jí)數(shù)(8.4-4)表示解只能在自變量的某個(gè)區(qū)間內(nèi)才一致有效。 現(xiàn)舉例說(shuō)明如下。 例例8.4-1 系統(tǒng)有最簡(jiǎn)單的非線(xiàn)性彈性時(shí),可近似地化簡(jiǎn)成下面的杜芬(Duffing)方程 00 00 x,Ax給定初始條件為用基本攝動(dòng)法求此問(wèn)題的解。0320 xxx (8.4-14a)32020 xxx 或(8.4-14b) 解:解:取方程(8.4-14)有如式(8.4-4)的解,由式(8.4-10)得到下列方程組20002231010022220200103xxxxxxxx x 可以把初始條件取成下列形式 0000, 0000, 00 1

18、,2,iixAxxxi并利用三角恒等式ttt0003cos33cos41cos得tAtAxx030200302012013cos41cos43 它的解為tAttAtDtCx03003000013cos321sin83sincos將初始條件代入方程組,得tAx000cos考慮i=1的初始條件,x1為tAttAtAx030030003013cos321sin83cos321將x0和x1代入式(8.4-4),就得到精確到O()的漸近解ttttAtAx000030003cos321sin83cos321cos從x1式看到,x1中包含有tsin0t項(xiàng),稱(chēng)為長(zhǎng)期項(xiàng)(或稱(chēng)永年項(xiàng))。常數(shù)22242202xxx因此x不可能為無(wú)窮大。由于長(zhǎng)期項(xiàng)的出現(xiàn),使得漸近解x隨時(shí)間t的增加而無(wú)限增長(zhǎng),即當(dāng) 時(shí), ,這與事實(shí)相矛盾。實(shí)際上,方程(8.4-14)經(jīng)過(guò)一次積分后可得tx 級(jí)數(shù)只有當(dāng)t=O(0)時(shí),即在t0)的彈簧,頻率比線(xiàn)性系統(tǒng)提高,反之0,頻率減小。 例例8.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論