第01講 行列式的定義及性質(zhì)_第1頁
第01講 行列式的定義及性質(zhì)_第2頁
第01講 行列式的定義及性質(zhì)_第3頁
第01講 行列式的定義及性質(zhì)_第4頁
第01講 行列式的定義及性質(zhì)_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、第1講 1.1 n階行列式的定義及性質(zhì)第1章行 列 式1.1 n 階行列式的定義及性質(zhì)階行列式的定義及性質(zhì)二階行列式用于解二元一次聯(lián)立方程組二階行列式用于解二元一次聯(lián)立方程組求解下面的方程組)()(2122221211212111bxaxabxaxa得:,)()(122221aa212122121122211babaxaaaa)(得:,)()(211112aa121211221122211babaxaaaa)(,時(shí)當(dāng)021122211aaaa,211222112121221aaaababax211222111212112aaaababax階行列式二為稱bcaddcba,211222112121

2、221aaaababax211222111212112aaaababax.2211112babaD ,2221211ababD ,22211211aaaaD 記則二元一次方程組的解為:DDxDDx2211,D稱為線性方程組的系數(shù)行列式.2.2.三階行列式用于解三元一次聯(lián)立方程組三階行列式用于解三元一次聯(lián)立方程組定義三階行列式如下:定義三階行列式如下:333231232221131211aaaaaaaaa323122211333312321123332232211aaaaaaaaaaaaaaa332112322311312213322113312312332211aaaaaaaaaaaaaaaa

3、aa323122211211333231232221131211aaaaaaaaaaaaaaa131312121111AaAaAa3332232211aaaaM的代數(shù)余子式。為稱ijijijjiijaAMA,)(aaaM3331232112aaaaM的余子式;為稱ijijaM987654321例如:875439764298651)()()(3532342362484510336231)()()(987654321861942753843762951487210596844512010518045. 0,時(shí)當(dāng)0333231232221131211aaaaaaaaaD33

4、32321312232221211313212111bxaxaxabxaxaxabxaxaxa對于線性代數(shù)方程組.,DDxDDxDDx332211其中,,3332323222131211aabaabaabD ,3333123221131112abaabaabaD .3323122221112113baabaabaaD 1.1.1 n 階行列式的定義(遞歸法)階行列式的定義(遞歸法)定義定義由n2個(gè)數(shù)aij(i,j=1,2,n)組成的n 階行列式階行列式當(dāng)n=1時(shí),Da11當(dāng)n2時(shí),nnAaAaAaD1112121111是一個(gè)算術(shù)式.nnnnnnaaaaaaaaaD212222111211其中其

5、中:aij稱為行列式的第i行,第j列的元素;Mij是劃去D的第i行第j列后的n1階行列式;M ij 稱為aij的余子式;Aij =(-1)i+j Mij稱為aij的代數(shù)余子式。nnijijaaD|)det(簡記為nnjnjnnnijijiinijijiinjjjiijaaaaaaaaaaaaaaaaA,)(1111111111111111111111111例例1 對角行列式、下三角行列式對角行列式、下三角行列式niiinnnnnnaaaaaaaaaa1212221112211000000000證明:證明:nnnnaaaaaa21222111000nnnnaaaaaaa3233322211000

6、nnnnaaaaaaaa434443332211000nnnnnnnnaaaaaa,1112222110.,nnnnnnaaaaa11222211000000000000121aaaaDnnn例例2 計(jì)算行列式計(jì)算行列式=(1)n(n1)/2a1a2an1an= (1)n1 an Dn-112112)2()1() 1(aaaannnn=Dn=(1)n+1 an Dn-1=(1)n1 an (1)n2 an1 Dn-2解:解:1.1.2 n 階行列式的性質(zhì)階行列式的性質(zhì)行列式的轉(zhuǎn)置行列式的轉(zhuǎn)置nnnnnnTaaaaaaaaaD212221212111nnnnnnaaaaaaaaaD2122221

7、11211稱行列式稱行列式為行列式為行列式轉(zhuǎn)置行列式轉(zhuǎn)置行列式性質(zhì)性質(zhì)1 1 行列式行列式D與其轉(zhuǎn)置行列式與其轉(zhuǎn)置行列式DT相等相等. .證明:證明:采用歸納法證明.下面以4階行列式說明之。當(dāng)n=1時(shí),,1111aDaDT.TDD當(dāng)n=2時(shí),.2112221122211211aaaaaaaaD.2112221122122111aaaaaaaaDT.TDD歸納假設(shè),對于階數(shù)不超過3的行列式,結(jié)論成立。對于4階行列式44434241343332312423222114131211aaaaaaaaaaaaaaaaD44342414433323134232221241312111aaaaaaaaaaa

8、aaaaaDT44342443332342322211aaaaaaaaaa44341443331342321221aaaaaaaaaa44241443231342221231aaaaaaaaaa34241433231332221241aaaaaaaaaa由歸納假設(shè),44434234333224232211aaaaaaaaaaDT44434234333214131221aaaaaaaaaa44434224232214131231aaaaaaaaaa34333224232214131241aaaaaaaaaa44434234333224232211aaaaaaaaaaDT4443423433321

9、4131221aaaaaaaaaa44434224232214131231aaaaaaaaaa34333224232214131241aaaaaaaaaa43423332144442343213444334331221aaaaaaaaaaaaaaaa44434234333224232211aaaaaaaaaa43422322144442242213444324231231aaaaaaaaaaaaaaaa33322322143432242213343324231241aaaaaaaaaaaaaaaa43423332144442343213444334331221aaaaaaaaaaaaaaaa4

10、4434234333224232211aaaaaaaaaa43422322144442242213444324231231aaaaaaaaaaaaaaaa33322322143432242213343324231241aaaaaaaaaaaaaaaa44434234333224232211aaaaaaaaaa34332423414443242331444334332112aaaaaaaaaaaaaaaa34322422414442242231444234322113aaaaaaaaaaaaaaaa33322322414342232231434233322114aaaaaaaaaaaaaaaa對

11、二階矩陣轉(zhuǎn)置后得到:44434234333224232211aaaaaaaaaaDT34243323414424432331443443332112aaaaaaaaaaaaaaaa34243222414424422231443442322113aaaaaaaaaaaaaaaa33233222414323422231433342322114aaaaaaaaaaaaaaaa44434234333224232211aaaaaaaaaaDT44342443332341312112aaaaaaaaaa44342442322241312113aaaaaaaaaa43332342322241312114aa

12、aaaaaaaa44434234333224232211aaaaaaaaaaDT44342443332341312112aaaaaaaaaa44342442322241312113aaaaaaaaaa43332342322241312114aaaaaaaaaa44434234333224232211aaaaaaaaaaDT44434134333124232112aaaaaaaaaa44424134323124222113aaaaaaaaaa43424133323123222114aaaaaaaaaaDaaaaaaaaaaaaaaaa4443424134333231242322211413121

13、11414131312121111AaAaAaAaDT證畢階數(shù)不超過n的行列式與其轉(zhuǎn)置行列式相等,的各個(gè)代數(shù)余子式;階行列式表示設(shè)DnAij的各個(gè)代數(shù)余子式;階行列式表示設(shè)TijDnB則:jiijAB nnnnnnaaaaaaaaaD212222111211nnnnnnaaaaaaaaa212221212111nnBaBaBa11122111111121211111nnAaAaAa行列式也可以用其第1列的數(shù)值與其代數(shù)余子式展開。性質(zhì)性質(zhì)1 1 行列式行列式D與其轉(zhuǎn)置行列式與其轉(zhuǎn)置行列式DT相等相等. .再證明:再證明:采用歸納法證明.還以4階行列式說明之。當(dāng)n=1時(shí),,1111aDaDT.TD

14、D當(dāng)n=2時(shí),.2112221122211211aaaaaaaaD.2112221122122111aaaaaaaaDT.TDD歸納假設(shè),對于階數(shù)不超過3的行列式,結(jié)論成立。對于4階行列式44434241343332312423222114131211aaaaaaaaaaaaaaaaD44342414433323134232221241312111aaaaaaaaaaaaaaaaDT44342443332342322211aaaaaaaaaa44341443331342321221aaaaaaaaaa44241443231342221231aaaaaaaaaa34241433231332221

15、241aaaaaaaaaa43334232144434423213443443331221aaaaaaaaaaaaaaaa44434234333224232211aaaaaaaaaa43234222144424422213442443231231aaaaaaaaaaaaaaaa33233222143424322213342433231241aaaaaaaaaaaaaaaa44434234333224232211aaaaaaaaaa34243323414424432331443443332112aaaaaaaaaaaaaaaa34243222414424422231443442322131aaa

16、aaaaaaaaaaaaa33233222414323422231433342322114aaaaaaaaaaaaaaaa44434234333224232211aaaaaaaaaa44342443332341312112aaaaaaaaaa44342442322241312113aaaaaaaaaa43332342322241312114aaaaaaaaaa44434234333224232211aaaaaaaaaaDT44434134333124232112aaaaaaaaaa44424134323124222113aaaaaaaaaa43424133323123222114aaaaaaa

17、aaaDaaaaaaaaaaaaaaaa444342413433323124232221141312111414131312121111AaAaAaAaDT性質(zhì)性質(zhì)2 2 行列式對任一行行列式對任一行( (或列或列) )按下式展開按下式展開, ,其值相等其值相等, ,即即niAaAaAaAaDininiiiinkikik,122111njAaAaAaAaDnjnjjjjjnkkjkj,122111證明:證明:采用歸納法證明.僅就n=4,i=3時(shí)舉例說明當(dāng)n=2時(shí),222221212112221122211211AaAaaaaaaaaaD歸納假設(shè),對于階數(shù)不超過3的行列式D,結(jié)論成立.22221

18、212AaAa對于n階行列式設(shè)i=3,1414131312121111MaMaMaMaD44434241343332312423222114131211aaaaaaaaaaaaaaaaD按第三行展開,得將14131211MMMM,43422322344442242233444324233211aaaaaaaaaaaaaaaaD43412321344441242133444324233112aaaaaaaaaaaaaaaa42412221344441242132444224223113aaaaaaaaaaaaaaaa42412221334341232132434223223114aaaaaaaa

19、aaaaaaaa4444333332223131MaMaMaMa.4444333332223131AaAaAaAaD987654321643189731597642)()()(1268219542362. 0976431zyx643197319764zyxnnnniniinnnnniniinaaaaaaaaakaaakakakaaaaD212111211212111211nnnnininiiiinaaabababaaaaD21221111211nnnniniinnnnniniinaaabbbaaaaaaaaaaaa212111211212111211性質(zhì)性質(zhì)3 3(線性性質(zhì))(線性性質(zhì))利用性

20、質(zhì)2即可證明。推論推論1 若行列式有一行元素全為零,則行列式的值等于零。(相當(dāng)于第1式中k=0).性質(zhì)性質(zhì)4 若行列式有兩行元素相同,則行列式的值為若行列式有兩行元素相同,則行列式的值為0證明:證明:用歸納法證明:顯然,行列式階n=2 時(shí)命題 成立.設(shè)命題對 n -1 階行列式成立,對第 i, j 行相同的 n 階行列式D, 將第 k(ki, j)行展開,得knknkkkknlklklAaAaAaAaD22111階行列式,列的第行是劃去第其中11nlkMMAklkllkkl,)(,行相同行與第的第jiMkl),(nlMkl210 ,由歸納假設(shè),. 0D故推論推論2 若行列式中兩行元素成比例,則行列式的值為若行列式中兩行元素成比例,則行列式的值為0性質(zhì)性質(zhì)5 將行列式的某一行乘以常數(shù)加到另一行將行列式的某一行乘以常數(shù)加到另一行(對行對行列式作倍加行變換列式作倍加行變換), 則行列式的值不變。則行列式的值不變。nnnnjnjjiniinaaaaaaaaa

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論