考研314數(shù)學(xué)(農(nóng))大綱(新)_第1頁
考研314數(shù)學(xué)(農(nóng))大綱(新)_第2頁
考研314數(shù)學(xué)(農(nóng))大綱(新)_第3頁
考研314數(shù)學(xué)(農(nóng))大綱(新)_第4頁
考研314數(shù)學(xué)(農(nóng))大綱(新)_第5頁
免費預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、數(shù)學(xué)農(nóng)大綱一、函數(shù)、極限、連續(xù)函數(shù)的概念及表示法函數(shù)的有界性、單調(diào)性、周期性和奇偶性復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)根本初等函數(shù)的性質(zhì)及其圖形初等函數(shù)函數(shù)關(guān)系的建立數(shù)列極限與函數(shù)極限的定義及其性質(zhì)函數(shù)的左極限和右極限無窮小量和無窮大量的概念及其關(guān)系無窮小量的性質(zhì)及無窮小量的比擬極限的四那么運算極限存在的兩個準(zhǔn)那么:單調(diào)有界準(zhǔn)那么和夾逼準(zhǔn)那么兩個重要極限:函數(shù)連續(xù)的概念函數(shù)間斷點的類型初等函數(shù)的連續(xù)性閉區(qū)間上連續(xù)函數(shù)的性質(zhì)1 .理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應(yīng)用問題的函數(shù)關(guān)系.2 .了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.3 .理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念

2、.4 .掌握根本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.5 .了解數(shù)列極限和函數(shù)極限包括左極限和右極限的概念.6 了解極限的性質(zhì)與極限存在的兩個準(zhǔn)那么,掌握極限的四那么運算法那么,掌握利用兩個重要極限求極限的方法.7理解無窮小量的概念和根本性質(zhì),掌握無窮小量的比擬方法,了解無窮大量的概念及其與無窮小量的關(guān)系.8 .理解函數(shù)連續(xù)性的概念含左連續(xù)與右連續(xù),會判斷函數(shù)間斷點的類型.9 .了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)有界性、最大值和最小值定理、介值定理,并會應(yīng)用這些性質(zhì).二、一元函數(shù)微分學(xué)導(dǎo)數(shù)和微分的概念導(dǎo)數(shù)的幾何意義函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系平面曲線的切線

3、和法線導(dǎo)數(shù)和微分的四那么運算根本初等函數(shù)的導(dǎo)數(shù)復(fù)合函數(shù)和隱函數(shù)的微分法高階導(dǎo)數(shù)微分中值定理洛必達(dá)L'Hospita法那么函數(shù)單調(diào)性的判別函數(shù)的極值函數(shù)圖形的凹凸性、拐點及漸近線函數(shù)的最大值與最小值1 .理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,了解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程.2 .掌握根本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四那么運算法那么及復(fù)合函數(shù)的求導(dǎo)法那么,會求分段函數(shù)的導(dǎo)數(shù),會求隱函數(shù)的導(dǎo)數(shù).3 .了解高階導(dǎo)數(shù)的概念,掌握二階導(dǎo)數(shù)的求法.4 ,了解微分的概念以及導(dǎo)數(shù)與微分之間的關(guān)系,會求函數(shù)的微分.5 .理解羅爾Rolle定理和拉格朗日Lagrange中值定理,掌握

4、這兩個定理的簡單應(yīng)用.6,會用洛必達(dá)法那么求極限.7,掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法及應(yīng)用.8,會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性注:在區(qū)間內(nèi),設(shè)函數(shù)具有二階導(dǎo)數(shù).當(dāng)時,的圖形是凹的;當(dāng)時,的圖形是凸的,會求函數(shù)圖形的拐點和漸進(jìn)線水平、鉛直漸近線.三、一元函數(shù)積分學(xué)原函數(shù)和不定積分的概念不定積分的根本性質(zhì)根本積分公式定積分的概念和根本性質(zhì)定積分中值定理積分上限的函數(shù)與其導(dǎo)數(shù)牛頓-萊布尼茨Newton-Leibniz公式不定積分和定積分的換元積分方法與分部積分法反常廣義積分定積分的應(yīng)用1 .理解原函數(shù)與不定積分的概念,掌握不定積分的根本性質(zhì)與根本積分公

5、式,掌握不定積分的換元積分法與分部積分法.2 ,了解定積分的概念和根本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會求它的導(dǎo)數(shù),掌握牛頓-萊布尼茨公式以及定積分的換元積分法與分部積分法.3,會利用定積分計算平面圖形的面積和旋轉(zhuǎn)體的體積.4,了解無窮區(qū)間上的反常積分的概念,會計算無窮區(qū)間上的反常積分.四、多元函數(shù)微分學(xué)多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限與連續(xù)的概念多元函數(shù)偏導(dǎo)數(shù)的概念與計算多元復(fù)合函數(shù)的求導(dǎo)法與隱函數(shù)求導(dǎo)法二階偏導(dǎo)數(shù)全微分多元函數(shù)的極值和條件極值二重積分的概念、根本性質(zhì)和計算1, 了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義2, 了解二元函數(shù)的極限與連續(xù)的概念.3,

6、了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會求全微分會求多元隱函數(shù)的偏導(dǎo)數(shù).4, 了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件.5, 了解二重積分的概念與根本性質(zhì),掌握二重積分的計算方法直角坐標(biāo)、極坐標(biāo).五、常微分方程常微分方程的根本概念變量可別離的微分方程一階線性微分方程1,了解微分方程及其階、解、通解、初始條件和特解等概念.2,掌握變量可別離的微分方程和一階線性微分方程的求解方法.一、行列式行列式的概念和根本性質(zhì)行列式按行列展開定理1,了解行列式的概念,掌握行列式的性質(zhì).2,會應(yīng)用行列式的性質(zhì)和行列式按行列展開定

7、理計算行列式.二、矩陣矩陣的概念矩陣的線性運算矩陣的乘法方陣的哥方陣乘積的行列式矩陣的轉(zhuǎn)置逆矩陣的概念和性質(zhì)矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價1,理解矩陣的概念,了解單位矩陣、對角矩陣、三角矩陣的定義及性質(zhì),了解對稱矩陣、反對稱矩陣及正交矩陣等的定義和性質(zhì).2,掌握矩陣的線性運算、乘法、車t置以及它們的運算規(guī)律,了解方陣的哥與方陣乘積的行列式的性質(zhì).3,理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,了解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.4,了解矩陣的初等變換和初等矩陣及矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的

8、方法.三、向量向量的概念向量的線性組合與線性表示向量組的線性相關(guān)與線性無關(guān)向量組的極大線性無關(guān)組等價向量組向量組的秩向量組的秩與矩陣的秩之間的關(guān)系1, 了解向量的概念,掌握向量的加法和數(shù)乘運算法那么.2, 理解向量的線性組合與線性表示、向量組線性相關(guān)、線性無關(guān)等概念,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別法.3, 理解向量組的極大線性無關(guān)組和秩的概念,會求向量組的極大線性無關(guān)組及秩.4, 了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩之間的關(guān)系.四、線性方程組線性方程組的克萊姆(Cramer)法那么線性方程組有解和無解的判定齊次線性方程組的根底解系和通解非齊次線性方程組的解與相

9、應(yīng)齊次線性方程組的解之間的關(guān)系非齊次線性方程組的通解1,會用克萊姆法那么解線性方程組.2,掌握非齊次線性方程組有解和無解的判定方法.3,理解齊次線性方程組的根底解系的概念,掌握齊次線性方程組的根底解系和通解的求法.5, 了解非齊次線性方程組解的結(jié)構(gòu)及通解的概念.5,掌握用初等行變換求解線性方程組的方法.五、矩陣的特征值和特征向量矩陣的特征值和特征向量的概念、性質(zhì)相似矩陣的概念及性質(zhì)矩陣可相似對角化的充分必要條件及相似對角矩陣實對稱矩陣的特征值、特征向量及其相似對角矩陣1,理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質(zhì),掌握求矩陣特征值和特征向量的方法.2, 了解矩陣相似的概念和相似矩陣

10、的性質(zhì),了解矩陣可相似對角化的充分必要條件,會將矩陣化為相似對角矩陣.3, 了解實對稱矩陣的特征值和特征向量的性質(zhì).一、隨機(jī)事件和概率隨機(jī)事件與樣本空間事件的關(guān)系與運算概率的根本性質(zhì)古典型概率條件概率概率的基本公式事件的獨立性獨立重復(fù)試驗1 ,了解樣本空間的概念,理解隨機(jī)事件的概念,掌握事件的關(guān)系與運算.2 .理解概率、條件概率的概念,掌握概率的根本性質(zhì),會計算古典型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯Bayes公式.3,理解事件的獨立性的概念,掌握用事件獨立性進(jìn)行概率計算;理解獨立重復(fù)試驗的概念,掌握計算有關(guān)事件概率的方法.二、隨機(jī)變量及其分布隨機(jī)變量隨機(jī)變量的

11、分布函數(shù)的概念及其性質(zhì)離散型隨機(jī)變量的概率分布連續(xù)型隨機(jī)變量的概率密度常見隨機(jī)變量的分布隨機(jī)變量函數(shù)的分布1,理解隨機(jī)變量的概念,理解分布函數(shù)的概念及性質(zhì),會計算與隨機(jī)變量相聯(lián)系的事件的概率.2,理解離散型隨機(jī)變量及其概率分布的概念,掌握分布、二項分布、泊松Poisson分布及其應(yīng)用.3 .理解連續(xù)型隨機(jī)變量及其概率密度的概念,掌握均勻分布、正態(tài)分布、指數(shù)分布及其應(yīng)用,其中參數(shù)為的指數(shù)分布的概率密度為.4,會求隨機(jī)變量簡單函數(shù)的分布三、多維隨機(jī)變量的分布二維隨機(jī)變量及其分布二維離散型隨機(jī)變量的概率分布和邊緣分布二維連續(xù)型隨機(jī)變量的概率密度和邊緣概率密度隨機(jī)變量的獨立性和不相關(guān)性常用二維隨機(jī)變量

12、的分布兩個隨機(jī)變量簡單函數(shù)的分布1,理解二維隨機(jī)變量的概念,理解二維隨機(jī)變量的分布的概念和性質(zhì),理解二維離散型隨機(jī)變量的概率分布和邊緣分布,理解二維連續(xù)型隨機(jī)變量的概率密度和邊緣密度,會求與二維離散型變量相關(guān)事件的概率.2,理解隨機(jī)變量的獨立性及不相關(guān)性的概念,了解隨機(jī)變量相互獨立的條件.4 了解二維均勻分布,了解二維正態(tài)分布的概率密度,了解其中參數(shù)的概率意義.4,會求兩個獨立隨機(jī)變量和的分布四、隨機(jī)變量的數(shù)字特征隨機(jī)變量的數(shù)學(xué)期望均值、方差、標(biāo)準(zhǔn)差及其性質(zhì)隨機(jī)變量簡單函數(shù)的數(shù)學(xué)期望矩、協(xié)方差、相關(guān)系數(shù)及其性質(zhì)1 .理解隨機(jī)變量數(shù)字特征(數(shù)學(xué)期望、方差、標(biāo)準(zhǔn)差、矢I、協(xié)方差、相關(guān)系數(shù))的概念,會運用數(shù)字特征的根本性質(zhì),并掌握常用分布的數(shù)字特征.2 .會求隨機(jī)變量簡單函數(shù)的數(shù)學(xué)期望.五、大數(shù)定律和中央極限定理切比雪夫(Chebyshev)不等式切比雪夫大數(shù)定律伯努利(Bernoulli)大數(shù)定律棣莫弗一拉普拉斯(DeMoivre-Laplace)定理列維林德伯格(Levy-Lindberg)定理1 .了解切比雪夫不等式.2 .了解切比雪夫大數(shù)定律和伯努利大數(shù)定律.3 .了解棣莫弗一拉普拉斯定理(二項分布以正態(tài)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論