外文翻譯文獻(xiàn)資料_第1頁(yè)
外文翻譯文獻(xiàn)資料_第2頁(yè)
外文翻譯文獻(xiàn)資料_第3頁(yè)
外文翻譯文獻(xiàn)資料_第4頁(yè)
外文翻譯文獻(xiàn)資料_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、逆變器 SHI TingNa, WANG Jian1引言逆變器是一種電動(dòng)裝置,轉(zhuǎn)換成直流電(DC),交流電流轉(zhuǎn)換的AC(交流)可以在任何所需的電壓和頻率使用適當(dāng)?shù)淖儔浩?,開關(guān),控制circuits.Solid狀態(tài)逆變器有沒有移動(dòng)部件,用于廣泛的應(yīng)用范圍從小型計(jì)算機(jī)開關(guān)電源,高壓大型電力公司電力,運(yùn)輸散裝直接電流應(yīng)用。逆變器通常用于提供交流電源,直流電源,如太陽(yáng)能電池板或電池。逆變器的主要有兩種類型。修改后的正弦波逆變器的輸出是類似方波輸出,輸出變?yōu)榱惴耙欢螘r(shí)間切換積極或消極的除外。它是簡(jiǎn)單,成本低,是大多數(shù)電子設(shè)備兼容,除敏感或?qū)S迷O(shè)備,例如某些激光打印機(jī)。一個(gè)

2、純正弦波逆變器產(chǎn)生一個(gè)近乎完美的正弦波輸出(<3的總諧波失真),本質(zhì)上是相同的公用事業(yè)提供電網(wǎng)。因此,它是與所有的交流電的電子設(shè)備兼容。這是在電網(wǎng)領(lǐng)帶逆變器使用的類型。它的設(shè)計(jì)更復(fù)雜,成本5或10倍以上每單位功率電逆變器是一個(gè)高功率的電子振蕩器。它這樣命名,因?yàn)樵缙诘臋C(jī)械A(chǔ)C到DC轉(zhuǎn)換器工作在反向,因而被“倒”,將直流電轉(zhuǎn)換AC.The變頻器執(zhí)行的整流器對(duì)面功能。2應(yīng)用2.1直流電源利用率 逆變器從交流電力來(lái)源,如電池,太陽(yáng)能電池板,燃料電池的直流電轉(zhuǎn)換成。電力,可以在任何所需的電壓,特別是它可以操作交流電源操作而設(shè)計(jì)的設(shè)備,或糾正,以產(chǎn)生任何所需的voltage Grid領(lǐng)帶逆變器的直

3、流送入分銷網(wǎng)絡(luò)的能量,因?yàn)樗鼈儺a(chǎn)生電流交替使用相同的波形和頻率分配制度提供。他們還可以關(guān)掉一個(gè)blackout.Micro逆變器的情況下自動(dòng)轉(zhuǎn)換成交流電電網(wǎng)的電流直接從當(dāng)前個(gè)別太陽(yáng)能電池板。默認(rèn)情況下,他們是格領(lǐng)帶設(shè)計(jì)。2.2不間斷電源不間斷電源(UPS),電池和逆變器,交流電源,主電源不可用時(shí)使用。當(dāng)主電源恢復(fù)正常時(shí),整流提供直流電源給電池充電。2.3感應(yīng)加熱逆變器的低頻交流主電源轉(zhuǎn)換到更高頻率的感應(yīng)加熱使用。要做到這一點(diǎn),首先糾正交流電源提供直流電源。逆變器,然后改變高頻率的交流電源,直流電源。2.4高壓直流輸電隨著高壓直流輸電,交流電源經(jīng)過整流和高壓直流電源傳輸?shù)搅硪粋€(gè)位置。在接收的位置

4、,在靜態(tài)逆變器廠逆變器轉(zhuǎn)換回交流電源。2.5變頻驅(qū)動(dòng)器一個(gè)變頻驅(qū)動(dòng)控制向電動(dòng)機(jī)提供電源的頻率和電壓控制交流電機(jī)的運(yùn)行速度。逆變器提供控制電源。在大多數(shù)情況下,變頻驅(qū)動(dòng),包括整流器,使逆變器的直流電源,可從交流主電源提供。由于逆變器是關(guān)鍵部件,變頻驅(qū)動(dòng),有時(shí)被稱為逆變器驅(qū)動(dòng)器,或只是逆變器。2.6電動(dòng)汽車驅(qū)動(dòng)器目前使用的權(quán)力,在一些電動(dòng)和柴油 - 電動(dòng)軌道車輛以及一些電池的電動(dòng)汽車和混合動(dòng)力電動(dòng)公路車輛,如豐田Prius和菲斯克噶牽引電機(jī)調(diào)速電機(jī)控制逆變器。變頻技術(shù)的各種改進(jìn)正在開發(fā)專門用于電動(dòng)汽車的應(yīng)用。2在再生制動(dòng)的車輛,逆變器也需要從電機(jī)(作為發(fā)電機(jī))的權(quán)力,并儲(chǔ)存在電池中。2.7一般情況

5、下 一個(gè)變壓器,使交流電源轉(zhuǎn)換為任何所需的電壓,但在相同的頻率。直流逆變器,加上整流器,可以被用來(lái)轉(zhuǎn)換從任何電壓,交流或直流,任何其他的電壓,也交流或直流,在任何所需的頻率。輸出功率不能超過輸入功率,但效率高的余熱消耗的功率小的比例。3電路描述3.1基本設(shè)計(jì)在一個(gè)簡(jiǎn)單的逆變電路,直流電源連接到變壓器初級(jí)繞組中心抽頭通過。一個(gè)正在迅速來(lái)回切換開關(guān)允許電?流流回直流電源后,兩個(gè)備用路徑,然后通過初級(jí)繞組的一端其他。在變壓器的初級(jí)繞組中的電流方向交替產(chǎn)生交流電(AC)在二次回路。機(jī)電開關(guān)設(shè)備的版本包括兩個(gè)固定觸點(diǎn)和支持動(dòng)觸頭彈簧。春天擁有對(duì)固定觸點(diǎn)之一的可移動(dòng)的接觸和電磁鐵拉動(dòng)產(chǎn)接觸到相對(duì)固定的聯(lián)系

6、。在電磁鐵的電流被中斷的開關(guān),使開關(guān)不斷來(lái)回切換迅速的行動(dòng)。這種機(jī)電逆變器開關(guān)的類型,稱為一個(gè)振動(dòng)器或蜂鳴器,曾一度被用于真空管汽車收音機(jī)。類似的機(jī)制已被用于門鈴,蜂鳴器和紋身槍。當(dāng)他們成為具有足夠的額定功率,晶體管和其他各種類型的半導(dǎo)體開關(guān)逆變電路設(shè)計(jì)已納入。3.2輸出波形 如上所述,在簡(jiǎn)單的逆變器開關(guān)時(shí)不耦合到輸出變壓器,產(chǎn)生一個(gè)方形的電壓波形作為反對(duì)的是平常的交流電源波形的正弦的波形,由于其簡(jiǎn)單的關(guān)閉和對(duì)自然的。使用傅立葉分析,周期性波形表示作為正弦波無(wú)窮級(jí)數(shù)的總和。原始波形正弦波具有相同的頻率被稱為基本組成部分。其他正弦波,稱為諧波,該系列包括有頻率是基本頻率的整數(shù)倍。需要從變頻器的輸

7、出波形的質(zhì)量取決于所連接的負(fù)載的特點(diǎn)。一些負(fù)載需要一個(gè)近乎完美的正弦波電源電壓才能正常工作。方波電壓與其他負(fù)載可能工作得非常好。3.3三階段逆變器用于三相逆變器變頻驅(qū)動(dòng)應(yīng)用和高功率應(yīng)用,如高壓直流輸電。一個(gè)基本的三個(gè)單相逆變器的三相逆變器組成,每個(gè)交換機(jī)連接到三個(gè)負(fù)載端子。三層交換機(jī)的運(yùn)作最基本的控制計(jì)劃,協(xié)調(diào),使一臺(tái)交換機(jī)工作在60度的基本輸出波形的每個(gè)點(diǎn)。這將創(chuàng)建一個(gè)線到線輸出波形有六個(gè)步驟。六步波形方波是3的倍數(shù)的諧波消除如上所述的正面和負(fù)面的部分之間的零電壓的一步。當(dāng)艦載PWM技術(shù)應(yīng)用于六步波形,基本整體造型,或信封的波形,保留3次諧波及其倍數(shù),使被消除。4歷史4.1早期的逆變器從十九

8、世紀(jì)末到二十世紀(jì)中葉,直流 - 交流功率轉(zhuǎn)換完成使用旋轉(zhuǎn)器或馬達(dá)發(fā)電機(jī)組(爵套)。在二十世紀(jì)初,真空管和充滿氣體管開始被用于逆變器電路中的開關(guān)。最廣泛使用的管型晶閘管。機(jī)電逆變器的起源解釋源長(zhǎng)期變頻器。早期的AC至DC轉(zhuǎn)換器采用感應(yīng)或同步交流電機(jī)直接連接到一臺(tái)發(fā)電機(jī)(發(fā)電機(jī)),使發(fā)電機(jī)的整流子扭轉(zhuǎn)在正確的時(shí)刻其連接生產(chǎn)直流。后來(lái)的發(fā)展是同步的轉(zhuǎn)換器,電機(jī)和發(fā)電機(jī)繞組結(jié)合成一個(gè)電樞,一端與滑環(huán)和整流子在其他只有一個(gè)領(lǐng)域的框架。結(jié)果要么是交流,直流。與MG組,直流,可考慮將分別從AC生成,同步器,它在一定意義上可以認(rèn)為是“機(jī)械糾正交流”。由于正確的輔助設(shè)備和控制設(shè)備,MG集或旋轉(zhuǎn)轉(zhuǎn)換,可以“倒著跑

9、”,將直流轉(zhuǎn)換為交流電。因此,逆變器是一個(gè)倒置的轉(zhuǎn)換。 4.2可控整流逆變器自從1957年初年初以來(lái),晶體管不能提供足夠的電壓和額定電流最逆變器應(yīng)用,它是1957年的晶閘管或可控硅(SCR)的介紹,開始過渡到固態(tài)逆變電路??煽毓璧膿Q相的條件是在可控硅電路設(shè)計(jì)的關(guān)鍵考慮因素。不要關(guān)閉可控硅整流自動(dòng)門控制信號(hào)被切斷時(shí)。他們只關(guān)閉當(dāng)正向電流降至低于最低維持電流,每一種可控硅變化,通過一些外部進(jìn)程。對(duì)于連接到交流電源的可控硅,整流發(fā)生自然每次源?電壓極性反轉(zhuǎn)??煽毓柚绷麟娫催B接到通常需要強(qiáng)迫換,強(qiáng)制要求減刑時(shí)電流為零的一種手段。最復(fù)雜的可控硅電路采用自然,而不是被迫換減刑。此外被迫換電路,可控硅已被用

10、于在以上所述的逆變器電路的類型。在逆變器傳輸?shù)紸C電源由直流電源供電的應(yīng)用程序,它可以使用交流 - 直流可控整流電路的反演模式經(jīng)營(yíng)。在反演模式,可控整流電路整流逆變器行。這種類型的操作,可用于高壓直流輸電系統(tǒng)和再生制動(dòng)電機(jī)控制系統(tǒng)的操作。另一種類型的可控硅逆變電路是電流源輸入(CSI)逆變器。一個(gè)CSI逆變器是一個(gè)六步的電壓源逆變器的雙。用一個(gè)電流源逆變器,直流電源作為電流源而非電壓源配置。變頻器可控硅開關(guān)在六步序列直接階梯電流波形作為一個(gè)三相交流負(fù)載的電流。滬深逆變器換方法包括整流負(fù)載和并聯(lián)電容器減刑。這兩種方法,輸入電流調(diào)節(jié)協(xié)助減刑。帶整流負(fù)載,負(fù)載是在領(lǐng)先的功率因數(shù)運(yùn)行的同步電機(jī)。因?yàn)樗?/p>

11、們已經(jīng)成為在更高的額定電壓和電流,如可以通過控制信號(hào)的晶體管或IGBT的半導(dǎo)體已成為首選開關(guān)元件逆變電路使用。4.3整流器和逆變器的脈沖數(shù)整流電路往往流的每個(gè)周期的AC輸入電壓整流的直流側(cè)電流脈沖的數(shù)量分類。單相半波整流是一個(gè)脈沖電路和單相全波整流是兩個(gè)脈沖的電路。一個(gè)三相半波整流是一個(gè)三脈沖電路和三相全波整流是一個(gè)六脈沖電路。兩個(gè)或兩個(gè)以上的整流器三相整流器,有時(shí)串聯(lián)或并聯(lián)連接以獲得更高的電壓或額定電流。提供特種變壓器提供相移輸出整流器的輸入。這有相乘法效應(yīng)。六個(gè)階段是從兩個(gè)變壓器,12個(gè)階段從三變等。 12脈沖整流器,18脈沖整流器等相關(guān)的整流電路。當(dāng)可控整流電路的反演模式在運(yùn)作,他們將分

12、為脈沖數(shù)也。整流電路具有較高的脈沖數(shù)減少交流輸入電流和減少直流輸出電壓紋波的諧波含量。在反演模式,有較高的脈沖個(gè)數(shù)的電路,在AC輸出電壓波形的諧波含量較低。5 參考文獻(xiàn) 1 R. Organti, K. Nagaswamy, L. Sang, Predicted equal charge creterion scheme for constant frequency control of single phase boost-type AC-DC converter, IEEE Trans. Power Electron 13 (1) (1998) 47-57.2 M. Ohshima, E.

13、 Masada, A single-phase PCS with a novel constantly sampled current-regulated PWM scheme, IEEE Trans. Power Electron 14 (5) (1999) 823-830.3 T. Toshida, O. Shiizuka, O. Miyashita, K. Ohniwa, An improvement technique for the efficiency of high-frequency switch-mode rectifiers, IEEE Trans. Power Elect

14、ron 15 (6) (2000) 1118-1123.4 R. Sriniuasan,R. Oruganti,A unity power factor converter using half-bridge boost topology, IEEE Trans.Power Electron 13(3)(1998) 487-500.5 K. Itako, T. Mori, A high performance rectifier control system with feedforward control and DC resonance filter, in: International

15、Conference on Electrical Engineering 2005, Kunming, China, July 10-14, 2005.6 K. Itako, T. Mori. Full bridge PWM rectifier with load current feedforward, in: International Conference on Electrical Engineering, Hong Kong, 2009.7 W. Leonhard, Control of Electrical Drives, 3rd ed.,Springer, 2001, pp. 1

16、60-162.Inverter SHI TingNa, WANG Jian1 IntroductionAn inverter is an electrical device that converts direct current (DC) to alternating current (AC); the converted AC can be at any required voltage and frequency with the use of appropriate transformers, switching, and control circuits

17、.Solid-state inverters have no moving parts and are used in a wide range of applications, from small switching power supplies in computers, to large electric utility high-voltage direct current applications that transport bulk power. Inverters are commonly used to supply AC power from DC sources suc

18、h as solar panels or batteries.There are two main types of inverter. The output of a modified sine wave inverter is similar to a square wave output except that the output goes to zero volts for a time before switching positive or negative. It is simple and low cost and is compatible with most electr

19、onic devices, except for sensitive or specialized equipment, for example certain laser printers. A pure sine wave inverter produces a nearly perfect sine wave output (<3% total harmonic distortion) that is essentially the same as utility-supplied grid power. Thus it is compatible with all AC elec

20、tronic devices. This is the type used in grid-tie inverters. Its design is more complex, and costs 5 or 10 times more per unit power The electrical inverter is a high-power electronic oscillator. It is so named because early mechanical AC to DC converters were made to work in reverse, and thus were

21、"inverted", to convert DC to AC.The inverter performs the opposite function of a rectifier.2 Applications2.1 DC power source utilizationAn inverter converts the DC electricity from sources such as batteries, solar panels, or fuel cells to AC electricity. The electricity can be at any requi

22、red voltage; in particular it can operate AC equipment designed for mains operation, or rectified to produce DC at any desired voltageGrid tie inverters can feed energy back into the distribution network because they produce alternating current with the same wave shape and frequency as supplied by t

23、he distribution system. They can also switch off automatically in the event of a blackout.Micro-inverters convert direct current from individual solar panels into alternating current for the electric grid. They are grid tie designs by default. 2.2 Uninterruptible power suppliesAn uninterruptible pow

24、er supply (UPS) uses batteries and an inverter to supply AC power when main power is not available. When main power is restored, a rectifier supplies DC power to recharge the batteries.2.3 Induction heatingInverters convert low frequency main AC power to a higher frequency for use in induction heati

25、ng. To do this, AC power is first rectified to provide DC power. The inverter then changes the DC power to high frequency AC power. 2.4 HVDC power transmissionWith HVDC power transmission, AC power is rectified and high voltage DC power is transmitted to another location. At the receiving location,

26、an inverter in a static inverter plant converts the power back to AC.2.5 Variable-frequency drivesA variable-frequency drive controls the operating speed of an AC motor by controlling the frequency and voltage of the power supplied to the motor. An inverter provides the controlled power. In most cas

27、es, the variable-frequency drive includes a rectifier so that DC power for the inverter can be provided from main AC power. Since an inverter is the key component, variable-frequency drives are sometimes called inverter drives or just inverters.2.6 Electric vehicle drivesAdjustable speed motor contr

28、ol inverters are currently used to power the traction motors in some electric and diesel-electric rail vehicles as well as some battery electric vehicles and hybrid electric highway vehicles such as the Toyota Prius and Fisker Karma. Various improvements in inverter technology are being developed sp

29、ecifically for electric vehicle applications. In vehicles with regenerative braking, the inverter also takes power from the motor (now acting as a generator) and stores it in the batteries. 2.7 The general caseA transformer allows AC power to be converted to any desired voltage, but at the same freq

30、uency. Inverters, plus rectifiers for DC, can be designed to convert from any voltage, AC or DC, to any other voltage, also AC or DC, at any desired frequency. The output power can never exceed the input power, but efficiencies can be high, with a small proportion of the power dissipated as waste he

31、at. 3 Circuit description 3.1 Basic designs In one simple inverter circuit, DC power is connected to a transformer through the centre tap of the primary winding. A switch is rapidly switched back and forth to allow current to flow back to the DC source following two alternate paths through one end o

32、f the primary winding and then the other. The alternation of the direction of current in the primary winding of the transformer produces alternating current (AC) in the secondary circuit. The electromechanical version of the switching device includes two stationary contacts and a spring supported mo

33、ving contact. The spring holds the movable contact against one of the stationary contacts and an electromagnet pulls the movable contact to the opposite stationary contact. The current in the electromagnet is interrupted by the action of the switch so that the switch continually switches rapidly bac

34、k and forth. This type of electromechanical inverter switch, called a vibrator or buzzer, was once used in vacuum tube automobile radios. A similar mechanism has been used in door bells, buzzers and tattoo guns.As they became available with adequate power ratings, transistors and various other types

35、 of semiconductor switches have been incorporated into inverter circuit designs3.2 Output waveformsThe switch in the simple inverter described above, when not coupled to an output transformer, produces a square voltage waveform due to its simple off and on nature as opposed to the sinusoidal wavefor

36、m that is the usual waveform of an AC power supply. Using Fourier analysis, periodic waveforms are represented as the sum of an infinite series of sine waves. The sine wave that has the same frequency as the original waveform is called the fundamental component. The other sine waves, called harmonic

37、s, that are included in the series have frequencies that are integral multiples of the fundamental frequency.The quality of output waveform that is needed from an inverter depends on the characteristics of the connected load. Some loads need a nearly perfect sine wave voltage supply in order to work

38、 properly. Other loads may work quite well with a square wave voltage. 3.3 Three phase invertersThree-phase inverters are used for variable-frequency drive applications and for high power applications such as HVDC power transmission. A basic three-phase inverter consists of three single-phase invert

39、er switches each connected to one of the three load terminals. For the most basic control scheme, the operation of the three switches is coordinated so that one switch operates at each 60 degree point of the fundamental output waveform. This creates a line-to-line output waveform that has six steps.

40、 The six-step waveform has a zero-voltage step between the positive and negative sections of the square-wave such that the harmonics that are multiples of three are eliminated as described above. When carrier-based PWM techniques are applied to six-step waveforms, the basic overall shape, or envelop

41、e, of the waveform is retained so that the 3rd harmonic and its multiples are cancelled.4 History4.1 Early invertersFrom the late nineteenth century through the middle of the twentieth century, DC-to-AC power conversion was accomplished using rotary converters or motor-generator sets (M-G sets). In

42、the early twentieth century, vacuum tubes and gas filled tubes began to be used as switches in inverter circuits. The most widely used type of tube was the thyratron.The origins of electromechanical inverters explain the source of the term inverter. Early AC-to-DC converters used an induction or syn

43、chronous AC motor direct-connected to a generator (dynamo) so that the generator's commutator reversed its connections at exactly the right moments to produce DC. A later development is the synchronous converter, in which the motor and generator windings are combined into one armature, with slip

44、 rings at one end and a commutator at the other and only one field frame. The result with either is AC-in, DC-out. With an M-G set, the DC can be considered to be separately generated from the AC; with a synchronous converter, in a certain sense it can be considered to be "mechanically rectifie

45、d AC". Given the right auxiliary and control equipment, an M-G set or rotary converter can be "run backwards", converting DC to AC. Hence an inverter is an inverted converter. 4.2 Controlled rectifier invertersSince early transistors were not available with sufficient voltage and curr

46、ent ratings for most inverter applications, it was the 1957 introduction of the thyristor or silicon-controlled rectifier (SCR) that initiated the transition to solid state inverter circuits.The commutation requirements of SCRs are a key consideration in SCR circuit designs. SCRs do not turn off or

47、commutate automatically when the gate control signal is shut off. They only turn off when the forward current is reduced to below the minimum holding current, which varies with each kind of SCR, through some external process. For SCRs connected to an AC power source, commutation occurs naturally eve

48、ry time the polarity of the source voltage reverses. SCRs connected to a DC power source usually require a means of forced commutation that forces the current to zero when commutation is required. The least complicated SCR circuits employ natural commutation rather than forced commutation. With the

49、addition of forced commutation circuits, SCRs have been used in the types of inverter circuits described above.In applications where inverters transfer power from a DC power source to an AC power source, it is possible to use AC-to-DC controlled rectifier circuits operating in the inversion mode. In

50、 the inversion mode, a controlled rectifier circuit operates as a line commutated inverter. This type of operation can be used in HVDC power transmission systems and in regenerative braking operation of motor control systems.Another type of SCR inverter circuit is the current source input (CSI) inve

51、rter. A CSI inverter is the dual of a six-step voltage source inverter. With a current source inverter, the DC power supply is configured as a current source rather than a voltage source. The inverter SCRs are switched in a six-step sequence to direct the current to a three-phase AC load as a steppe

52、d current waveform. CSI inverter commutation methods include load commutation and parallel capacitor commutation. With both methods, the input current regulation assists the commutation. With load commutation, the load is a synchronous motor operated at a leading power factor. As they have become av

53、ailable in higher voltage and current ratings, semiconductors such as transistors or IGBTs that can be turned off by means of control signals have become the preferred switching components for use in inverter circuits. 4.3 Rectifier and inverter pulse numbersRectifier circuits are often classified b

54、y the number of current pulses that flow to the DC side of the rectifier per cycle of AC input voltage. A single-phase half-wave rectifier is a one-pulse circuit and a single-phase full-wave rectifier is a two-pulse circuit. A three-phase half-wave rectifier is a three-pulse circuit and a three-phase full-wave rectifier is a six-pulse circuit。With three-phase rectifiers, two or more rectifiers are sometimes connected in series or parallel to obtain higher voltage or current ratings. The rectifier inputs are suppli

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論