


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上圓錐曲線1.圓錐曲線的兩定義:第一定義中要重視“括號”內(nèi)的限制條件:橢圓中,與兩個定點(diǎn)F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當(dāng)常數(shù)等于時,軌跡是線段FF,當(dāng)常數(shù)小于時,無軌跡;雙曲線中,與兩定點(diǎn)F,F(xiàn)的距離的差的絕對值等于常數(shù),且此常數(shù)一定要小于|FF|,定義中的“絕對值”與|FF|不可忽視。若|FF|,則軌跡是以F,F(xiàn)為端點(diǎn)的兩條射線,若|FF|,則軌跡不存在。若去掉定義中的絕對值則軌跡僅表示雙曲線的一支。如方程表示的曲線是_(答:雙曲線的左支)2.圓錐曲線的標(biāo)準(zhǔn)方程(標(biāo)準(zhǔn)方程是指中心(頂點(diǎn))在原點(diǎn),坐標(biāo)軸為對稱軸時的標(biāo)準(zhǔn)位置的方程):(1)橢圓:焦點(diǎn)在軸上
2、時(),焦點(diǎn)在軸上時1()。方程表示橢圓的充要條件是什么?(ABC0,且A,B,C同號,AB)。 若,且,則的最大值是_,的最小值是_(答:)(2)雙曲線:焦點(diǎn)在軸上: =1,焦點(diǎn)在軸上:1()。方程表示雙曲線的充要條件是什么?(ABC0,且A,B異號)。如設(shè)中心在坐標(biāo)原點(diǎn),焦點(diǎn)、在坐標(biāo)軸上,離心率的雙曲線C過點(diǎn),則C的方程為_(答:)(3)拋物線:開口向右時,開口向左時,開口向上時,開口向下時。3.圓錐曲線焦點(diǎn)位置的判斷(首先化成標(biāo)準(zhǔn)方程,然后再判斷):(1)橢圓:由,分母的大小決定,焦點(diǎn)在分母大的坐標(biāo)軸上。如已知方程表示焦點(diǎn)在y軸上的橢圓,則m的取值范圍是_(答:)(2)雙曲線:由,項(xiàng)系數(shù)
3、的正負(fù)決定,焦點(diǎn)在系數(shù)為正的坐標(biāo)軸上;(3)拋物線:焦點(diǎn)在一次項(xiàng)的坐標(biāo)軸上,一次項(xiàng)的符號決定開口方向。提醒:在橢圓中,最大,在雙曲線中,最大,。4.圓錐曲線的幾何性質(zhì):(1)橢圓(以()為例):范圍:;焦點(diǎn):兩個焦點(diǎn);對稱性:兩條對稱軸,一個對稱中心(0,0),四個頂點(diǎn),其中長軸長為2,短軸長為2;準(zhǔn)線:兩條準(zhǔn)線; 離心率:,橢圓,越小,橢圓越圓;越大,橢圓越扁。如(1)若橢圓的離心率,則的值是_(答:3或);(2)以橢圓上一點(diǎn)和橢圓兩焦點(diǎn)為頂點(diǎn)的三角形的面積最大值為1時,則橢圓長軸的最小值為_(答:)(2)雙曲線(以()為例):范圍:或;焦點(diǎn):兩個焦點(diǎn);對稱性:兩條對稱軸,一個對稱中心(0,
4、0),兩個頂點(diǎn),其中實(shí)軸長為2,虛軸長為2,特別地,當(dāng)實(shí)軸和虛軸的長相等時,稱為等軸雙曲線,其方程可設(shè)為;準(zhǔn)線:兩條準(zhǔn)線; 離心率:,雙曲線,等軸雙曲線,越小,開口越小,越大,開口越大;兩條漸近線:。(3)拋物線(以為例):范圍:;焦點(diǎn):一個焦點(diǎn),其中的幾何意義是:焦點(diǎn)到準(zhǔn)線的距離;對稱性:一條對稱軸,沒有對稱中心,只有一個頂點(diǎn)(0,0);準(zhǔn)線:一條準(zhǔn)線; 離心率:,拋物線。如設(shè),則拋物線的焦點(diǎn)坐標(biāo)為_(答:);5、點(diǎn)和橢圓()的關(guān)系:(1)點(diǎn)在橢圓外;(2)點(diǎn)在橢圓上1;(3)點(diǎn)在橢圓內(nèi)6直線與圓錐曲線的位置關(guān)系:(1)相交:直線與橢圓相交; 直線與雙曲線相交,但直線與雙曲線相交不一定有,當(dāng)
5、直線與雙曲線的漸近線平行時,直線與雙曲線相交且只有一個交點(diǎn),故是直線與雙曲線相交的充分條件,但不是必要條件;直線與拋物線相交,但直線與拋物線相交不一定有,當(dāng)直線與拋物線的對稱軸平行時,直線與拋物線相交且只有一個交點(diǎn),故也僅是直線與拋物線相交的充分條件,但不是必要條件。(2)相切:直線與橢圓相切;直線與雙曲線相切;直線與拋物線相切;(3)相離:直線與橢圓相離;直線與雙曲線相離;直線與拋物線相離。提醒:(1)直線與雙曲線、拋物線只有一個公共點(diǎn)時的位置關(guān)系有兩種情形:相切和相交。如果直線與雙曲線的漸近線平行時,直線與雙曲線相交,但只有一個交點(diǎn);如果直線與拋物線的軸平行時,直線與拋物線相交,也只有一個
6、交點(diǎn);(2)過雙曲線1外一點(diǎn)的直線與雙曲線只有一個公共點(diǎn)的情況如下:P點(diǎn)在兩條漸近線之間且不含雙曲線的區(qū)域內(nèi)時,有兩條與漸近線平行的直線和分別與雙曲線兩支相切的兩條切線,共四條;P點(diǎn)在兩條漸近線之間且包含雙曲線的區(qū)域內(nèi)時,有兩條與漸近線平行的直線和只與雙曲線一支相切的兩條切線,共四條;P在兩條漸近線上但非原點(diǎn),只有兩條:一條是與另一漸近線平行的直線,一條是切線;P為原點(diǎn)時不存在這樣的直線;(3)過拋物線外一點(diǎn)總有三條直線和拋物線有且只有一個公共點(diǎn):兩條切線和一條平行于對稱軸的直線。7、焦點(diǎn)三角形(橢圓或雙曲線上的一點(diǎn)與兩焦點(diǎn)所構(gòu)成的三角形)問題: ,當(dāng)即為短軸端點(diǎn)時,的最大值為bc;對于雙曲線
7、。 如 (1)短軸長為,練習(xí):點(diǎn)P是雙曲線上上一點(diǎn),為雙曲線的兩個焦點(diǎn),且=24,求的周長。8、拋物線中與焦點(diǎn)弦有關(guān)的一些幾何圖形的性質(zhì):(1)以過焦點(diǎn)的弦為直徑的圓和準(zhǔn)線相切;(2)設(shè)AB為焦點(diǎn)弦, M為準(zhǔn)線與x軸的交點(diǎn),則AMFBMF;(3)設(shè)AB為焦點(diǎn)弦,A、B在準(zhǔn)線上的射影分別為A,B,若P為AB的中點(diǎn),則PAPB;(4)若AO的延長線交準(zhǔn)線于C,則BC平行于x軸,反之,若過B點(diǎn)平行于x軸的直線交準(zhǔn)線于C點(diǎn),則A,O,C三點(diǎn)共線。9、 弦長公式:若直線與圓錐曲線相交于兩點(diǎn)A、B,且分別為A、B的橫坐標(biāo),則,若分別為A、B的縱坐標(biāo),則,若弦AB所在直線方程設(shè)為,則。特別地,焦點(diǎn)弦(過焦點(diǎn)
8、的弦):焦點(diǎn)弦的弦長的計(jì)算,一般不用弦長公式計(jì)算,而是將焦點(diǎn)弦轉(zhuǎn)化為兩條焦半徑之和后,利用第二定義求解。10、圓錐曲線的中點(diǎn)弦問題:遇到中點(diǎn)弦問題常用“韋達(dá)定理”或“點(diǎn)差法”求解。在橢圓中,以為中點(diǎn)的弦所在直線的斜率k=;弦所在直線的方程: 垂直平分線的方程:在雙曲線中,以為中點(diǎn)的弦所在直線的斜率k=;在拋物線中,以為中點(diǎn)的弦所在直線的斜率k=。提醒:因?yàn)槭侵本€與圓錐曲線相交于兩點(diǎn)的必要條件,故在求解有關(guān)弦長、對稱問題時,務(wù)必別忘了檢驗(yàn)!11了解下列結(jié)論(1)雙曲線的漸近線方程為;(2)以為漸近線(即與雙曲線共漸近線)的雙曲線方程為為參數(shù),0)。(3)中心在原點(diǎn),坐標(biāo)軸為對稱軸的橢圓、雙曲線方
9、程可設(shè)為;(4)橢圓、雙曲線的通徑(過焦點(diǎn)且垂直于對稱軸的弦)為,焦準(zhǔn)距(焦點(diǎn)到相應(yīng)準(zhǔn)線的距離)為,拋物線的通徑為,焦準(zhǔn)距為; (5)通徑是所有焦點(diǎn)弦(過焦點(diǎn)的弦)中最短的弦;(6)若拋物線的焦點(diǎn)弦為AB,則;(7)若OA、OB是過拋物線頂點(diǎn)O的兩條互相垂直的弦,則直線AB恒經(jīng)過定點(diǎn)12.圓錐曲線中線段的最值問題:例1、(1)拋物線C:y2=4x上一點(diǎn)P到點(diǎn)A(3,4)與到準(zhǔn)線的距離和最小,則點(diǎn) P的坐標(biāo)為_ (2)拋物線C: y2=4x上一點(diǎn)Q到點(diǎn)B(4,1)與到焦點(diǎn)F的距離和最小,則點(diǎn)Q的坐標(biāo)為 。分析:(1)A在拋物線外,如圖,連PF,則,因而易發(fā)現(xiàn),當(dāng)A、P、F三點(diǎn)共線時,距離和最小。
10、(2) B在拋物線內(nèi),如圖,作QRl交于R,則當(dāng)B、Q、R三點(diǎn)共線時,距離和最小。 解:(1)(2,)(2)()1、已知橢圓C1的方程為,雙曲線C2的左、右焦點(diǎn)分別為C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn)。 (1) 求雙曲線C2的方程; (2) 若直線l:與橢圓C1及雙曲線C2恒有兩個不同的交點(diǎn),且l與C2的兩個交點(diǎn)A和B滿足(其中O為原點(diǎn)),求k的取值范圍。解:()設(shè)雙曲線C2的方程為,則故C2的方程為(II)將由直線l與橢圓C1恒有兩個不同的交點(diǎn)得即 .由直線l與雙曲線C2恒有兩個不同的交點(diǎn)A,B得 解此不等式得 由、得故k的取值范圍為2、在平面直角坐標(biāo)系xOy中,已知
11、點(diǎn)A(0,-1),B點(diǎn)在直線y = -3上,M點(diǎn)滿足MB/OA, MAAB = MBBA,M點(diǎn)的軌跡為曲線C。()求C的方程;()P為C上的動點(diǎn),l為C在P點(diǎn)處得切線,求O點(diǎn)到l距離的最小值。()設(shè)M(x,y),由已知得B(x,-3),A(0,-1).所以=(-x,-1-y), =(0,-3-y), =(x,-2).再由愿意得知(+) =0,即(-x,-4-2y) (x,-2)=0.所以曲線C的方程式為y=x-2. ()設(shè)P(x,y)為曲線C:y=x-2上一點(diǎn),因?yàn)閥=x,所以的斜率為x因此直線的方程為,即。則O點(diǎn)到的距離.又,所以當(dāng)=0時取等號,所以O(shè)點(diǎn)到距離的最小值為2
12、.3設(shè)雙曲線(a0,b0)的漸近線與拋物線y=x2 +1相切,則該雙曲線的離心率等于( )4、過橢圓()的左焦點(diǎn)作軸的垂線交橢圓于點(diǎn),為右焦點(diǎn),若,則橢圓的離心率為5、已知雙曲線的左、右焦點(diǎn)分別是、,其一條漸近線方程為,點(diǎn)在雙曲線上.則·( )06、已知直線與拋物線相交于兩點(diǎn),為的焦點(diǎn),若,則( )7、已知直線和直線,拋物線上一動點(diǎn)到直線和直線的距離之和的最小值是( )8、設(shè)已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為F(1,0),直線l與拋物線C相交于A,B兩點(diǎn)。若AB的中點(diǎn)為(2,2),則直線l的方程為_.9、橢圓的焦點(diǎn)為,點(diǎn)P在橢圓上,若,則 ;的大小為 .10、過拋物線的焦點(diǎn)F作傾斜
13、角為的直線交拋物線于A、B兩點(diǎn),若線段AB的長為8,則_ 【解析】設(shè)切點(diǎn),則切線的斜率為.由題意有又解得: 雙曲線的一條漸近線為,由方程組,消去y,得有唯一解,所以=,所以,由漸近線方程為知雙曲線是等軸雙曲線,雙曲線方程是,于是兩焦點(diǎn)坐標(biāo)分別是(2,0)和(2,0),且或.不妨去,則,.·【解析】設(shè)拋物線的準(zhǔn)線為直線 恒過定點(diǎn)P .如圖過分 別作于,于, 由,則,點(diǎn)B為AP的中點(diǎn).連結(jié),則, 點(diǎn)的橫坐標(biāo)為, 故點(diǎn)的坐標(biāo)為, 故選D2005年高考全國試題分類解析(圓錐曲線)一、選擇題:1重慶卷) 若動點(diǎn)(x,y)在曲線(b>0)上變化,則x2+2y的最大值為(A ) (A) ;
14、(B) ; (C) ; (D) 2b;2. (浙江)函數(shù)yax21的圖象與直線yx相切,則a( B )(A) (B) (C) (D)13. (天津卷)設(shè)雙曲線以橢圓長軸的兩個端點(diǎn)為焦點(diǎn),其準(zhǔn)線過橢圓的焦點(diǎn),則雙曲線的漸近線的斜率為( C )ABCD4(天津卷)從集合1,2,3,11中任選兩個元素作為橢圓方程中的m和n,則能組成落在矩形區(qū)域B=(x,y)| |x|<11且|y|<9內(nèi)的橢圓個數(shù)為(B )A43 B 72 C 86 D 905. (上海)過拋物線的焦點(diǎn)作一條直線與拋物線相交于A、B兩點(diǎn),它們的橫坐標(biāo)之和等于5,則這樣的直線( B )A有且僅有一條 B有且僅有兩條 C有無
15、窮多條 D不存在6. (山東卷)設(shè)直線關(guān)于原點(diǎn)對稱的直線為,若與橢圓的交點(diǎn)為A、B、,點(diǎn)為橢圓上的動點(diǎn),則使的面積為的點(diǎn)的個數(shù)為( B )(A)1 (B)2 (C)3 (D)47 (全國卷)已知雙曲線的一條準(zhǔn)線為,則該雙曲線的離心率為(A)(A)(B)(C)(D)8.(全國卷II) 雙曲線的漸近線方程是( C)(A) (B) (C) (D) 9.(全國卷II)已知雙曲線的焦點(diǎn)為、,點(diǎn)在雙曲線上且軸,則到直線的距離為(C )(A) (B) (C) (D) 10. 拋物線上一點(diǎn)的縱坐標(biāo)為4,則點(diǎn)與拋物線焦點(diǎn)的距離為(D )(A) 2(B) 3(C) 4(D) 511. (全國卷III)設(shè)橢圓的兩個
16、焦點(diǎn)分別為F1、F2,過F2作橢圓長軸的垂線交橢圓于點(diǎn)P,若F1PF2為等腰直角三角形,則橢圓的離心率是(D)(A) (B) (C) (D)12.(遼寧卷)已知雙曲線的中心在原點(diǎn),離心率為.若它的一條準(zhǔn)線與拋物線的準(zhǔn)線重合,則該雙曲線與拋物線的交點(diǎn)到原點(diǎn)的距離是( B )A2+BCD2113.(江蘇卷)拋物線y=4上的一點(diǎn)M到焦點(diǎn)的距離為1,則點(diǎn)M的縱坐標(biāo)是( B) ( A ) ( B ) ( C ) ( D ) 014.(江蘇卷)(11)點(diǎn)P(-3,1)在橢圓的左準(zhǔn)線上.過點(diǎn)P且方向?yàn)閍=(2,-5)的光線,經(jīng)直線=-2反射后通過橢圓的左焦點(diǎn),則這個橢圓的離心率為(A ) ( A ) ( B ) ( C ) ( D ) 15.(湖南卷)已知雙
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東工貿(mào)職業(yè)技術(shù)學(xué)院《傳播倫理學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 閩南理工學(xué)院《照明基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 新疆第二醫(yī)學(xué)院《大規(guī)模集成電路布局規(guī)劃設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 宜春學(xué)院《孔型設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 淮南職業(yè)技術(shù)學(xué)院《材料成型綜合性設(shè)計(jì)與制作》2023-2024學(xué)年第二學(xué)期期末試卷
- 蘇州大學(xué)《分布式處理與云計(jì)算》2023-2024學(xué)年第二學(xué)期期末試卷
- 中央財(cái)經(jīng)大學(xué)《工程量清單計(jì)量》2023-2024學(xué)年第二學(xué)期期末試卷
- 吉林工商學(xué)院《商業(yè)空間設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 炎黃職業(yè)技術(shù)學(xué)院《軟件需求與建?!?023-2024學(xué)年第二學(xué)期期末試卷
- 泉州工程職業(yè)技術(shù)學(xué)院《環(huán)境管理與政策》2023-2024學(xué)年第二學(xué)期期末試卷
- 客房服務(wù)員:高級客房服務(wù)員考試題
- 《中醫(yī)常用護(hù)理技術(shù)基礎(chǔ)》課件-一般護(hù)理-第五節(jié)用藥護(hù)理
- T-CI 179-2023 泥石流泥位流速毫米波雷達(dá)監(jiān)測技術(shù)規(guī)程
- 綠化及景觀工程施工組織設(shè)計(jì)
- 勞模人物王進(jìn)喜 (模板)
- 跨行業(yè)合作與創(chuàng)新
- GJB9001C內(nèi)部審核檢查表
- IgG4相關(guān)性疾病的影像改變課件
- 完整投標(biāo)書字體與格式要求
- 讀后續(xù)寫微技能之動作描寫課件-高三英語一輪復(fù)習(xí)
- 中醫(yī)針灸美容技術(shù)操作規(guī)范2023版
評論
0/150
提交評論