必修五不等式知識(shí)點(diǎn)_第1頁(yè)
必修五不等式知識(shí)點(diǎn)_第2頁(yè)
必修五不等式知識(shí)點(diǎn)_第3頁(yè)
必修五不等式知識(shí)點(diǎn)_第4頁(yè)
必修五不等式知識(shí)點(diǎn)_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、不等式的基本知識(shí)(一)不等式與不等關(guān)系1、應(yīng)用不等式(組)表示不等關(guān)系;不等式的主要性質(zhì):(1)對(duì)稱性:(2)傳遞性:(3)加法法則:;(同向可加)(4)乘法法則:;(同向同正可乘)(5) 倒數(shù)法則:(6)乘方法則:(7)開方法則:2、應(yīng)用不等式的性質(zhì)比較兩個(gè)實(shí)數(shù)的大?。鹤鞑罘ǎㄗ鞑钭冃闻袛喾?hào)結(jié)論)3、應(yīng)用不等式性質(zhì)證明不等式(二)解不等式1、一元二次不等式的解法一元二次不等式的解集:設(shè)相應(yīng)的一元二次方程的兩根為,則不等式的解的各種情況如下表: 二次函數(shù)()的圖象一元二次方程有兩相異實(shí)根有兩相等實(shí)根 無(wú)實(shí)根 R 2、簡(jiǎn)單的一元高次不等式的解法:標(biāo)根法:其步驟是:(1)分解成若干個(gè)一次因式的積

2、,并使每一個(gè)因式中最高次項(xiàng)的系數(shù)為正;(2)將每一個(gè)一次因式的根標(biāo)在數(shù)軸上,從最大根的右上方依次通過(guò)每一點(diǎn)畫曲線;并注意奇穿過(guò)偶彈回;(3)根據(jù)曲線顯現(xiàn)的符號(hào)變化規(guī)律,寫出不等式的解集。3、分式不等式的解法:分式不等式的一般解題思路是先移項(xiàng)使右邊為0,再通分并將分子分母分解因式,并使每一個(gè)因式中最高次項(xiàng)的系數(shù)為正,最后用標(biāo)根法求解。解分式不等式時(shí),一般不能去分母,但分母恒為正或恒為負(fù)時(shí)可去分母。4、不等式的恒成立問(wèn)題:常應(yīng)用函數(shù)方程思想和“分離變量法”轉(zhuǎn)化為最值問(wèn)題若不等式在區(qū)間上恒成立,則等價(jià)于在區(qū)間上若不等式在區(qū)間上恒成立,則等價(jià)于在區(qū)間上(三)線性規(guī)劃1、用二元一次不等式(組)表示平面區(qū)

3、域二元一次不等式Ax+By+C0在平面直角坐標(biāo)系中表示直線Ax+By+C=0某一側(cè)所有點(diǎn)組成的平面區(qū)域.(虛線表示區(qū)域不包括邊界直線)2、二元一次不等式表示哪個(gè)平面區(qū)域的判斷方法由于對(duì)在直線Ax+By+C=0同一側(cè)的所有點(diǎn)(),把它的坐標(biāo)()代入Ax+By+C,所得到實(shí)數(shù)的符號(hào)都相同,所以只需在此直線的某一側(cè)取一特殊點(diǎn)(x0,y0),從Ax0+By0+C的正負(fù)即可判斷Ax+By+C0表示直線哪一側(cè)的平面區(qū)域.(特殊地,當(dāng)C0時(shí),常把原點(diǎn)作為此特殊點(diǎn))3、線性規(guī)劃的有關(guān)概念:線性約束條件:在上述問(wèn)題中,不等式組是一組變量x、y的約束條件,這組約束條件都是關(guān)于x、y的一次不等式,故又稱線性約束條件

4、線性目標(biāo)函數(shù):關(guān)于x、y的一次式z=ax+by是欲達(dá)到最大值或最小值所涉和的變量x、y的解析式,叫線性目標(biāo)函數(shù)線性規(guī)劃問(wèn)題:一般地,求線性目標(biāo)函數(shù)在線性約束條件下的最大值或最小值的問(wèn)題,統(tǒng)稱為線性規(guī)劃問(wèn)題可行解、可行域和最優(yōu)解:滿足線性約束條件的解(x,y)叫可行解由所有可行解組成的集合叫做可行域使目標(biāo)函數(shù)取得最大或最小值的可行解叫線性規(guī)劃問(wèn)題的最優(yōu)解4、求線性目標(biāo)函數(shù)在線性約束條件下的最優(yōu)解的步驟:(1)尋找線性約束條件,列出線性目標(biāo)函數(shù);(2)由二元一次不等式表示的平面區(qū)域做出可行域;(3)依據(jù)線性目標(biāo)函數(shù)作參照直線ax+by0,在可行域內(nèi)平移參照直線求目標(biāo)函數(shù)的最優(yōu)解(四)基本不等式1若

5、a,bR,則a2+b22ab,當(dāng)且僅當(dāng)a=b時(shí)取等號(hào).2如果a,b是正數(shù),那么變形: 有:a+b;ab,當(dāng)且僅當(dāng)a=b時(shí)取等號(hào).3如果a,bR+,a·b=P(定值),當(dāng)且僅當(dāng)a=b時(shí),a+b有最小值;如果a,bR+,且a+b=S(定值),當(dāng)且僅當(dāng)a=b時(shí),ab有最大值.注:(1)當(dāng)兩個(gè)正數(shù)的積為定值時(shí),可以求它們和的最小值,當(dāng)兩個(gè)正數(shù)的和為定值時(shí),可以求它們的積的最小值,正所謂“積定和最小,和定積最大”(2)求最值的重要條件“一正,二定,三取等”4.常用不等式有:(1)(根據(jù)目標(biāo)不等式左右的運(yùn)算結(jié)構(gòu)選用) ;(2)a、b、cR,(當(dāng)且僅當(dāng)時(shí),取等號(hào));(3)若,則(糖水的濃度問(wèn)題)。

6、不等式主要題型講解(一) 不等式與不等關(guān)系題型一:不等式的性質(zhì)1. 對(duì)于實(shí)數(shù)中,給出下列命題: ; ,則。其中正確的命題是_題型二:比較大小(作差法、函數(shù)單調(diào)性、中間量比較,基本不等式)(二) 解不等式題型三:解不等式2. 解不等式 3. 解不等式。4. 解不等式5. 不等式的解集為x|-1x2,則=_, b=_6. 關(guān)于的不等式的解集為,則關(guān)于的不等式的解集為7. 解關(guān)于x的不等式題型四:恒成立問(wèn)題8. 關(guān)于x的不等式a x2+ a x+10 恒成立,則a的取值范圍是_ 9. 若不等式對(duì)的所有實(shí)數(shù)都成立,求的取值范圍.10. 已知且,求使不等式恒成立的實(shí)數(shù)的取值范圍。(三)基本不等式題型五:求最值11. (直接用)求下列函數(shù)的值域(1)y3x 2 (2)yx12. (配湊項(xiàng)與系數(shù))(1)已知,求函數(shù)的最大值。(2)當(dāng)時(shí),求的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論