高中數(shù)學必修2教案_第1頁
高中數(shù)學必修2教案_第2頁
高中數(shù)學必修2教案_第3頁
高中數(shù)學必修2教案_第4頁
高中數(shù)學必修2教案_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、高中數(shù)學必修2教案篇一:高中數(shù)學必修2教案第一章:空間幾何體1.1.1柱、錐、臺、球的結構特征一、教學目標1知識與技能(1)通過實物操作,增強學生的直觀感知。(2)能根據(jù)幾何結構特征對空間物體進行分類。(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。(4)會表示有關于幾何體以及柱、錐、臺的分類。2過程與方法(1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。(2)讓學生觀察、討論、歸納、概括所學的知識。3情感態(tài)度與價值觀(1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。(2)培養(yǎng)學生的空間想象能力和抽象括能

2、力。二、教學重點、難點重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。難點:柱、錐、臺、球的結構特征的概括。三、教學用具(1)學法:觀察、思考、交流、討論、概括。(2)實物模型、投影儀四、教學思路(一)創(chuàng)設情景,揭示課題1教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。2所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過觀察。根據(jù)某種標準對這些空間物體進行分類嗎?這是我們所要學習的內(nèi)容。(二)、研探新知1引導學生觀

3、察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。2觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?3組織學生分組討論,每小組選出一名同學發(fā)表本組討論結果。在此基礎上得出棱柱的主要結構特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。4教師與學生結合圖形共同得出棱柱相關概念以及棱柱的表示。5提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?請列舉身邊具有已學過的幾何結構特征的物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?6以類似的方法,

4、讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。7讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的概念及圓柱的表示。8引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。9教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。10現(xiàn)實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結構特征的物體組合而成。請列舉身邊具有已學過的幾何結構特征的物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題

5、,讓學生思考。1有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)2棱柱的何兩個平面都可以作為棱柱的底面嗎?3課本P8,習題1.1 A組第1題。4圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?5棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?四、鞏固深化練習:課本P7 練習1、2(1)(2)課本P8 習題1.1 第2、3、4題五、歸納整理由學生整理學習了哪些內(nèi)容六、布置作業(yè)課本P8 練習題1.1 B組第1題課外練習 課本P8 習題1.1 B組第2題1.2.1 空間幾何體的三視圖(1課時)一、教學目標1知識與技能(1)掌握

6、畫三視圖的基本技能(2)豐富學生的空間想象力2過程與方法主要通過學生自己的親身實踐,動手作圖,體會三視圖的作用。3情感態(tài)度與價值觀(1)提高學生空間想象力(2)體會三視圖的作用二、教學重點、難點重點:畫出簡單組合體的三視圖難點:識別三視圖所表示的空間幾何體三、學法與教學用具1學法:觀察、動手實踐、討論、類比2教學用具:實物模型、三角板四、教學思路(一)創(chuàng)設情景,揭開課題“橫看成嶺側看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學習空間幾何體的三視圖。在初中,我們已經(jīng)學習了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側視

7、圖、俯視圖),你能畫出空間幾何體的三視圖嗎?(二)實踐動手作圖1講臺上放球、長方體實物,要求學生畫出它們的三視圖,教師巡視,學生畫完后可交流結果并討論;2教師引導學生用類比方法畫出簡單組合體的三視圖(1)畫出球放在長方體上的三視圖(2)畫出礦泉水瓶(實物放在桌面上)的三視圖學生畫完后,可把自己的作品展示并與同學交流,總結自己的作圖心得。作三視圖之前應當細心觀察,認識了它的基本結構特征后,再動手作圖。3三視圖與幾何體之間的相互轉(zhuǎn)化。(1)投影出示圖片(課本P10,圖1.2-3)請同學們思考圖中的三視圖表示的幾何體是什么?(2)你能畫出圓臺的三視圖嗎?(3)三視圖對于認識空間幾何體有何作用?你有何

8、體會?教師巡視指導,解答學生在學習中遇到的困難,然后讓學生發(fā)表對上述問題的看法。4請同學們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學交流。(三)鞏固練習課本P12 練習1、2 P18習題1.2 A組1(四)歸納整理請學生回顧發(fā)表如何作好空間幾何體的三視圖(五)課外練習1自己動手制作一個底面是正方形,側面是全等的三角形的棱錐模型,并畫出它的三視圖。2自己制作一個上、下底面都是相似的正三角形,側面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。1.2.2 空間幾何體的直觀圖(1課時)一、教學目標1知識與技能(1)掌握斜二測畫法畫水平設置的平面圖形的直觀圖。(2)采用對比的方法了解

9、在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。2過程與方法學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。3情感態(tài)度與價值觀(1)提高空間想象力與直觀感受。(2)體會對比在學習中的作用。(3)感受幾何作圖在生產(chǎn)活動中的應用。二、教學重點、難點重點、難點:用斜二測畫法畫空間幾何值的直觀圖。三、學法與教學用具1學法:學生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。2教學用具:三角板、圓規(guī)練習反饋根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。2例2,用斜二測畫法畫水平放置的圓的直觀圖教師引導學生與例1進行比較,與畫水平放

10、置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構造出一些點。教師組織學生思考、討論和交流,如何構造出需要的一些點,與學生共同完成例2并詳細板書畫法。3探求空間幾何體的直觀圖的畫法(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-ABCD的直觀圖。教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。(2)投影出示幾何體的三視圖、課本P15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡

11、視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關系。4平行投影與中心投影投影出示課本P17圖1.2-12,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。5鞏固練習,課本P16練習1(1),2,3,4三、歸納整理學生回顧斜二測畫法的關鍵與步驟四、作業(yè)1書畫作業(yè),課本P17 練習第5題2課外思考 課本P16,探究(1)(2)1.3.1柱體、錐體、臺體的表面積與體積一、教學目標1、知識與技能(1)通過對柱、錐、臺體的研究,掌握柱、錐、臺的表面積和體積的求法。(2)能運用公式求解,柱體、錐體和臺全的全積,并且熟悉臺體與術體和錐體之間的轉(zhuǎn)換關系。(3)培養(yǎng)學生空間想

12、象能力和思維能力。2、過程與方法篇二:人教版高中數(shù)學必修2教案講義1: 空 間 幾 何 體一、教學要求:通過實物模型,觀察大量的空間圖形,認識柱體、錐體、臺體、球體及簡單組合體的結構特征,并能運用這些特征描述現(xiàn)實生活中簡單物體的結構.二、教學重點:讓學生感受大量空間實物及模型,概括出柱體、錐體、臺體、球體的結構特征.三、教學難點:柱、錐、臺、球的結構特征的概括.四、教學過程:(一)、新課導入:1. 導入:進入高中,在必修的第一、二章中,將繼續(xù)深入研究一些空間幾何圖形,即學習立體幾何,注意學習方法:直觀感知、操作確認、思維辯證、度量計算.(二)、講授新課:1. 教學棱柱、棱錐的結構特征:、討論:

13、給一個長方體模型,經(jīng)過上、下兩個底面用刀垂直切,得到的幾何體有哪些公共特征?把這些幾何體用水平力推斜后,仍然有哪些公共特征?、定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫棱柱. 列舉生活中的棱柱實例(三棱鏡、方磚、六角螺帽).結合圖形認識:底面、側面、側棱、頂點、高、對角面、對角線.、分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等.表示:棱柱ABCDE-ABCDE、討論:埃及金字塔具有什么幾何特征?、定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體叫棱錐.結合圖形認識:底面、側面

14、、側棱、頂點、高. 討論:棱錐如何分類及表示?、討論:棱柱、棱錐分別具有一些什么幾何性質(zhì)?有什么共同的性質(zhì)?棱柱:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形棱錐:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.2. 教學圓柱、圓錐的結構特征: 討論:圓柱、圓錐如何形成? 定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體叫圓柱;以直角三角形的一條直角邊為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)所成的曲面所圍成的幾何體叫圓錐.結合圖形認識:底面、軸、側面、母線、高. 表示方法

15、討論:棱柱與圓柱、棱柱與棱錐的共同特征? 柱體、錐體. 觀察書P2若干圖形,找出相應幾何體;三、鞏固練習:1. 已知圓錐的軸截面等腰三角形的腰長為 5cm,面積為12cm,求圓錐的底面半徑.2.已知圓柱的底面半徑為3cm,軸截面面積為24cm,求圓柱的母線長.3.正四棱錐的底面積為46cm,側面等腰三角形面積為6cm,求正四棱錐側棱.(四)、 教學棱臺與圓臺的結構特征: 討論:用一個平行于底面的平面去截柱體和錐體,所得幾何體有何特征? 定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分叫做棱臺;用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分叫做圓臺.結合圖形認識:上下底面

16、、側面、側棱(母線)、頂點、高.討論:棱臺的分類及表示? 圓臺的表示?圓臺可如何旋轉(zhuǎn)而得? 討論:棱臺、圓臺分別具有一些什么幾何性質(zhì)? 22 棱臺:兩底面所在平面互相平行;兩底面是對應邊互相平行的相似多邊形;側面是梯形;側棱的延長線相交于一點. 圓臺:兩底面是兩個半徑不同的圓;軸截面是等腰梯形;任意兩條母線的延長線交于一點;母線長都相等. 討論:棱、圓與柱、錐、臺的組合得到6個幾何體. 棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐有什么關系? (以臺體的上底面變化為線索)2教學球體的.結構特征: 定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體,叫球體.結合圖形認識:球心、半徑、

17、直徑. 球的表示. 討論:球有一些什么幾何性質(zhì)? 討論:球與圓柱、圓錐、圓臺有何關系?(旋轉(zhuǎn)體)棱臺與棱柱、棱錐有什么共性?(多面體)3. 教學簡單組合體的結構特征: 討論:礦泉水塑料瓶由哪些幾何體構成?燈管呢? 定義:由柱、錐、臺、球等幾何結構特征組合的幾何體叫簡單組合體.4. 練習:圓錐底面半徑為1cm,其中有一個內(nèi)接正方體,求這個內(nèi)接正方體的棱長. (補充平行線分線段成比例定理)(五)、鞏固練習:1. 已知長方體的長、寬、高之比為4312,對角線長為26cm, 則長、寬、高分別為多少?2. 棱臺的上、下底面積分別是25和81,高為4,求截得這棱臺的原棱錐的高3. 若棱長均相等的三棱錐叫正

18、四面體,求棱長為a的正四面體的高.例題:用一個平行于圓錐底面的平面去截這個圓錐,截得的圓臺的上、下底面的半徑的比是1:4,截去的圓錐的母線長為3厘米,求此圓臺的母線之長。解:考查其截面圖,利用平行線的成比例,可得所求為9厘米。 例題2:已知三棱臺ABCABC 的上、下兩底均為正三角形,邊長分別為3和6,平行于底面的截面將側棱分為1:2兩部分,求截面的面積。(4) 圓臺的上、下度面半徑分別為6和12,平行于底面的截面分高為2:1兩部分,求截面的面積。(100) 解決臺體的平行于底面的截面問題,還臺為錐是行之有效的一種方法。講義2、空間幾何體的三視圖和直視圖一、教學要求:能畫出簡單幾何體的三視圖;

19、能識別三視圖所表示的空間幾何體. 掌握斜二測畫法;能用斜二測畫法畫空間幾何體的直觀圖.二、教學重點:畫出三視圖、識別三視圖.三、教學難點:識別三視圖所表示的空間幾何體.四、教學過程:(一)、新課導入:1. 討論:能否熟練畫出上節(jié)所學習的幾何體?工程師如何制作工程設計圖紙?2. 引入:從不同角度看廬山,有古詩:“橫看成嶺側成峰,遠近高低各不同。不識廬山真面目,只緣身在此山中?!?對于我們所學幾何體,常用三視圖和直觀圖來畫在紙上.三視圖:觀察者從不同位置觀察同一個幾何體,畫出的空間幾何體的圖形;直觀圖:觀察者站在某一點觀察幾何體,畫出的空間幾何體的圖形. 用途:工程建設、機械制造、日常生活.(二)、講授新課:1. 教學中心投影與平行投影: 投影法的提出:物體在光線的照射下,就會在地面或墻壁上產(chǎn)生影子。人們將這種自然現(xiàn)象加以的抽象,總結其中的規(guī)律,提出了

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論