章熱力學(xué)基本定律與函數(shù)_第1頁(yè)
章熱力學(xué)基本定律與函數(shù)_第2頁(yè)
章熱力學(xué)基本定律與函數(shù)_第3頁(yè)
章熱力學(xué)基本定律與函數(shù)_第4頁(yè)
章熱力學(xué)基本定律與函數(shù)_第5頁(yè)
已閱讀5頁(yè),還剩40頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第第 一一 章章化學(xué)熱力學(xué)基本定律與函數(shù)化學(xué)熱力學(xué)基本定律與函數(shù)1. 化學(xué)熱力學(xué)的科學(xué)框架化學(xué)熱力學(xué)的科學(xué)框架一、概述一、概述 熱功轉(zhuǎn)換規(guī)律熱功轉(zhuǎn)換規(guī)律熱力學(xué)三大定律熱力學(xué)三大定律平衡熱力平衡熱力學(xué)函數(shù)關(guān)系學(xué)函數(shù)關(guān)系逸度與活度。逸度與活度。 經(jīng)典熱力學(xué)經(jīng)典熱力學(xué)化學(xué)熱力學(xué)(溶液熱力學(xué),冶化學(xué)熱力學(xué)(溶液熱力學(xué),冶金熱力學(xué),化工熱力學(xué),材料熱力學(xué)等)。金熱力學(xué),化工熱力學(xué),材料熱力學(xué)等)。 非非平衡熱力學(xué)平衡熱力學(xué)二、化學(xué)熱力學(xué)的研究對(duì)象二、化學(xué)熱力學(xué)的研究對(duì)象化學(xué)熱力學(xué)的研究對(duì)象:化學(xué)熱力學(xué)的研究對(duì)象: 一切客觀實(shí)體及其變化規(guī)律一切客觀實(shí)體及其變化規(guī)律體系與環(huán)境體系與環(huán)境 體系:被研究的物質(zhì)與

2、空間體系:被研究的物質(zhì)與空間 環(huán)境:與體系發(fā)生關(guān)聯(lián)的物質(zhì)與空間環(huán)境:與體系發(fā)生關(guān)聯(lián)的物質(zhì)與空間 三類體系:三類體系: 封閉體系,開(kāi)放體系,孤立體系封閉體系,開(kāi)放體系,孤立體系封閉體系:封閉體系:有有能量傳遞,能量傳遞,無(wú)無(wú)物質(zhì)傳遞物質(zhì)傳遞開(kāi)放(敞開(kāi))體系:開(kāi)放(敞開(kāi))體系:有有能量傳遞,能量傳遞,有有物質(zhì)傳遞物質(zhì)傳遞孤立(隔離)體系:孤立(隔離)體系:無(wú)無(wú)能量傳遞,能量傳遞,無(wú)無(wú)物質(zhì)傳遞物質(zhì)傳遞2. 過(guò)程:在一定條件下,體系由始態(tài)變化至末過(guò)程:在一定條件下,體系由始態(tài)變化至末態(tài),稱體系經(jīng)歷了一個(gè)(變化)過(guò)程,實(shí)現(xiàn)變化態(tài),稱體系經(jīng)歷了一個(gè)(變化)過(guò)程,實(shí)現(xiàn)變化的具體步驟稱為途徑。的具體步驟稱為途

3、徑。 過(guò)程分類:過(guò)程分類:(2)按變化性質(zhì)分類:)按變化性質(zhì)分類:(1)按環(huán)境條件分類)按環(huán)境條件分類(3)按過(guò)程本質(zhì)分類)按過(guò)程本質(zhì)分類(1)按環(huán)境條件分類:)按環(huán)境條件分類:恒容過(guò)程:體系的體積恒定不變恒容過(guò)程:體系的體積恒定不變恒壓過(guò)程恒壓過(guò)程:p始始= p末末=p外外=const恒溫過(guò)程:恒溫過(guò)程: T始始= T末末=T外外=const絕熱過(guò)程:體系與環(huán)境間無(wú)熱交換絕熱過(guò)程:體系與環(huán)境間無(wú)熱交換自由膨脹過(guò)程:自由膨脹過(guò)程:p外外=0循環(huán)過(guò)程:始、末態(tài)為同一狀態(tài)循環(huán)過(guò)程:始、末態(tài)為同一狀態(tài)(2)按變化性質(zhì)分類:)按變化性質(zhì)分類:簡(jiǎn)單狀態(tài)變化(低級(jí)變化)過(guò)程簡(jiǎn)單狀態(tài)變化(低級(jí)變化)過(guò)程相態(tài)

4、變化(中級(jí)變化)過(guò)程相態(tài)變化(中級(jí)變化)過(guò)程化學(xué)變化(高級(jí)變化)過(guò)程化學(xué)變化(高級(jí)變化)過(guò)程(3)按過(guò)程本質(zhì)分類)按過(guò)程本質(zhì)分類 可逆過(guò)程可逆過(guò)程 平衡(準(zhǔn)平衡)過(guò)程平衡(準(zhǔn)平衡)過(guò)程 不可逆過(guò)程不可逆過(guò)程 非平衡過(guò)程非平衡過(guò)程 三、化學(xué)熱力學(xué)方法三、化學(xué)熱力學(xué)方法化學(xué)熱力學(xué)方法化學(xué)熱力學(xué)方法 狀態(tài)函數(shù)法狀態(tài)函數(shù)法1.體系的性質(zhì)與類型體系的性質(zhì)與類型性質(zhì):描述體系狀態(tài)的物理量性質(zhì):描述體系狀態(tài)的物理量容量性質(zhì):與體系物質(zhì)量多少有關(guān)的物理量容量性質(zhì):與體系物質(zhì)量多少有關(guān)的物理量強(qiáng)度性質(zhì):與體系物質(zhì)量多少無(wú)關(guān)的物理量強(qiáng)度性質(zhì):與體系物質(zhì)量多少無(wú)關(guān)的物理量2. 狀態(tài)與狀態(tài)函數(shù)狀態(tài)與狀態(tài)函數(shù) 性質(zhì)描述

5、體系狀態(tài),狀態(tài)是由性質(zhì)決定。性質(zhì)描述體系狀態(tài),狀態(tài)是由性質(zhì)決定。 平衡態(tài)平衡態(tài) 狀態(tài)狀態(tài) 非平衡態(tài)非平衡態(tài) 平衡態(tài)必須同時(shí)滿足:平衡態(tài)必須同時(shí)滿足: 熱平衡熱平衡(|T體體T外外|=0), 力平衡力平衡(不作功不作功), 質(zhì)平衡質(zhì)平衡(無(wú)相變和化學(xué)反應(yīng)無(wú)相變和化學(xué)反應(yīng))狀態(tài)函數(shù)的特點(diǎn):狀態(tài)函數(shù)的特點(diǎn):(1)狀態(tài)一定,狀態(tài)函數(shù)一定;)狀態(tài)一定,狀態(tài)函數(shù)一定;(2)狀態(tài)函數(shù)變化量只與始末態(tài)有關(guān),與體系)狀態(tài)函數(shù)變化量只與始末態(tài)有關(guān),與體系 由始態(tài)到末態(tài)的變化途徑無(wú)關(guān)。即,具有由始態(tài)到末態(tài)的變化途徑無(wú)關(guān)。即,具有 數(shù)學(xué)上的全微分性質(zhì):數(shù)學(xué)上的全微分性質(zhì):XXXXXX始末末始d如:如:T = T2 T

6、1第一定律第一定律第二定律第二定律第三定律第三定律熱力學(xué)能熱力學(xué)能(U)和焓和焓(H)U,HrUm,rHm引出引出熱熱Q功功W引出引出熵熵(S),亥氏自由能,亥氏自由能(A)吉氏自由能吉氏自由能(G)S,A,G 引出引出判據(jù)判據(jù)化學(xué)勢(shì)化學(xué)勢(shì)rGm引引 出出計(jì)算計(jì)算化學(xué)平化學(xué)平衡原理衡原理化學(xué)熱力學(xué)化學(xué)熱力學(xué) +四、化學(xué)熱力學(xué)的框架四、化學(xué)熱力學(xué)的框架2. 熱力學(xué)能熱力學(xué)能(U)和焓和焓(H)一、一、熱力學(xué)能熱力學(xué)能(U)的引出及其物理意義的引出及其物理意義1.熱和功熱和功熱:熱:體系與環(huán)境間因存在溫度差而交換的能量多少為熱交換值,體系與環(huán)境間因存在溫度差而交換的能量多少為熱交換值, 簡(jiǎn)稱熱。簡(jiǎn)

7、稱熱。 熱是與體系始末態(tài)和過(guò)程性質(zhì)有關(guān)的參變量。熱是與體系始末態(tài)和過(guò)程性質(zhì)有關(guān)的參變量。 不是狀態(tài)函數(shù)不是狀態(tài)函數(shù) 是過(guò)程函數(shù)是過(guò)程函數(shù) 熱不具有全微分性質(zhì),其微小量只能用熱不具有全微分性質(zhì),其微小量只能用Q表示。表示。 Q 0,體系放熱體系放熱(能量減少能量減少) Q 0,體系吸熱,體系吸熱(能量增加能量增加)功:功:除熱以外,體系與環(huán)境間的以其他形式交換除熱以外,體系與環(huán)境間的以其他形式交換 的能量稱為功。的能量稱為功。 不是狀態(tài)函數(shù)不是狀態(tài)函數(shù) 是過(guò)程函數(shù)是過(guò)程函數(shù) 熱不具有全微分性質(zhì),熱不具有全微分性質(zhì),微小作功以微小作功以W表示。表示。 有體積功、機(jī)械功、電功、表面功等等。有體積功、

8、機(jī)械功、電功、表面功等等。 體系對(duì)體系對(duì)環(huán)境環(huán)境作功,引起體系能量減少,作功為負(fù);作功,引起體系能量減少,作功為負(fù); 環(huán)境對(duì)體系作功,環(huán)境對(duì)體系作功,引起體系能量增加,作功引起體系能量增加,作功為正。為正。 體積功體積功( W ) :作功時(shí),體系的體積發(fā)生變化:作功時(shí),體系的體積發(fā)生變化 W = F外外dl = p外外dV 非體積功非體積功( W ) :除體積功之外的功:除體積功之外的功2. 熱力學(xué)能熱力學(xué)能(U)的引出及其物理意義的引出及其物理意義(1)第一定律的表述及其實(shí)質(zhì))第一定律的表述及其實(shí)質(zhì)(2)熱力學(xué)能)熱力學(xué)能(U):體系內(nèi)部質(zhì)點(diǎn)的動(dòng)能和勢(shì)能:體系內(nèi)部質(zhì)點(diǎn)的動(dòng)能和勢(shì)能 之和。之和

9、。 U = f(T,V),是狀態(tài)函數(shù)),是狀態(tài)函數(shù)VVUTTUUTVddd (3)熱力學(xué)第一定律的數(shù)學(xué)表達(dá)式)熱力學(xué)第一定律的數(shù)學(xué)表達(dá)式 U2 = U1 + Q + WT U = Q + WT 或或 dU = Q + WT 討論:討論: 體系熱力學(xué)能的改變只能通過(guò)熱或功的形式與外界體系熱力學(xué)能的改變只能通過(guò)熱或功的形式與外界 進(jìn)行能量交換來(lái)實(shí)現(xiàn);進(jìn)行能量交換來(lái)實(shí)現(xiàn); U是狀態(tài)函數(shù),在確定始末態(tài)間,是狀態(tài)函數(shù),在確定始末態(tài)間,U是確定值,是確定值, 雖然雖然Q和和WT是過(guò)程函數(shù),但它們的代數(shù)和是確定值;是過(guò)程函數(shù),但它們的代數(shù)和是確定值; WT = W +W 即即WT = W +W , 且且 W

10、 = p外外dV ,所以,所以 dU = Q p外外dV + W 只作體積功時(shí),只作體積功時(shí), dU = Q p外外dV 自由膨脹(自由膨脹(W=0) p外外= 0, 則則W = 0, 故故U = Q 恒容過(guò)程(恒容過(guò)程(W=0) dV = 0,則,則W = 0, 故故U = QV 3. 焦耳實(shí)驗(yàn)與理想氣體的熱力學(xué)能焦耳實(shí)驗(yàn)與理想氣體的熱力學(xué)能J.P.焦耳于1845年完成即:理想氣體的熱力學(xué)能只是溫度的函數(shù)即:理想氣體的熱力學(xué)能只是溫度的函數(shù) U = f(T ) 因?yàn)椋阂驗(yàn)椋篞 = 0,W = 0,所以:,所以:U = 0, 即即 dU = 0,又:,又:dT = 0,而,而dV0, 根據(jù)根據(jù)

11、VVUTTUUTVddd 0 TVU 故:故:該式只適用于理想氣體該式只適用于理想氣體4.可逆過(guò)程與最大功可逆過(guò)程與最大功V1V2p體體= p1p2p2p體體=p2VV1V2p2VV1V2p1 恒溫過(guò)程恒溫過(guò)程 W脹脹=p2(V2V1)W縮縮=p1(V1V2) P2 P1 |W脹脹| |W縮縮|, 這說(shuō)明,雖然體系回到了始態(tài),但留下了痕跡,這說(shuō)明,雖然體系回到了始態(tài),但留下了痕跡,即體系膨脹時(shí)放出的能量為即體系膨脹時(shí)放出的能量為|W脹脹| ,而壓縮時(shí)環(huán)境提供的能量為而壓縮時(shí)環(huán)境提供的能量為|W縮縮|,大于大于|W脹脹| ,有凈能量交換。,有凈能量交換。若膨脹過(guò)程是分多步完成,則:若膨脹過(guò)程是分

12、多步完成,則: W脹脹= W1 + W2 + +Wnp外外(i)=p體體(i+1), p外外(i)p體體(i),Wi = p外外(i)(Vi+1 Vi)p體體()p外外()V1= Vp體體()p外外() V W1p體體()p外外() V W2p體體(n)p外外(n)Vn+1= V2 WnW脹脹= p外外(i)(Vi+1 Vi) = p外外(i)Vini=ni=p外()p外(n)V1V2VipV當(dāng)當(dāng) p外外(i)=p體體(i) dpi時(shí),時(shí),(Vi+1 Vi) = dVi,n W脹脹= p外外(i) dVi = p體體(i) dVi + dpi dVi p體體(i) dVi = p體體 dVii

13、 =i =i =i =V2V1p外外()p外外(n)V1V2ViV若若p外外(i)=p體體(i) + dpi,則,則 W縮縮= -p體體 dVi= -W脹脹V2V1 |W縮縮| = | W脹脹| 在圖中,膨脹線與在圖中,膨脹線與壓縮線完全重合壓縮線完全重合可逆過(guò)程有三大特點(diǎn):見(jiàn)教材可逆過(guò)程有三大特點(diǎn):見(jiàn)教材175頁(yè)頁(yè)特點(diǎn)特點(diǎn)說(shuō)明可逆過(guò)程一般是無(wú)限緩慢的過(guò)程,是一種理說(shuō)明可逆過(guò)程一般是無(wú)限緩慢的過(guò)程,是一種理想過(guò)程。想過(guò)程。特點(diǎn)特點(diǎn)說(shuō)明沿可逆過(guò)程走一個(gè)來(lái)回,體系和環(huán)境都完全說(shuō)明沿可逆過(guò)程走一個(gè)來(lái)回,體系和環(huán)境都完全回到原狀態(tài)。正常相變點(diǎn)下進(jìn)行的相變滿足這一點(diǎn),故回到原狀態(tài)。正常相變點(diǎn)下進(jìn)行的相變

14、滿足這一點(diǎn),故為可逆過(guò)程,或可逆相變。為可逆過(guò)程,或可逆相變。特點(diǎn)特點(diǎn)說(shuō)明可逆過(guò)程體系對(duì)外作功最大,環(huán)境對(duì)體系作說(shuō)明可逆過(guò)程體系對(duì)外作功最大,環(huán)境對(duì)體系作功最小,無(wú)論什么功都是如此,這是生產(chǎn)所追求的理想功最小,無(wú)論什么功都是如此,這是生產(chǎn)所追求的理想境界,但不一定切合實(shí)際。境界,但不一定切合實(shí)際。恒溫可逆過(guò)程,體系對(duì)外作最大功;恒溫可逆過(guò)程,體系對(duì)外作最大功;恒壓過(guò)程恒壓過(guò)程(可逆可逆),Wr = - p外外(V2 V1) = - p體體(V2 V1) 恒外壓過(guò)程恒外壓過(guò)程(不可逆不可逆),Wir = - p外外(V2 V1) = Wr恒容過(guò)程恒容過(guò)程(可逆或不可逆可逆或不可逆), Wr =

15、Wir = 0 所以,可逆過(guò)程體系對(duì)外作最大功。所以,可逆過(guò)程體系對(duì)外作最大功。問(wèn)題:可逆熱機(jī)的效率最高,在其他條件相同的情問(wèn)題:可逆熱機(jī)的效率最高,在其他條件相同的情況下,若以可逆熱機(jī)牽引火車,其速度況下,若以可逆熱機(jī)牽引火車,其速度( )。(1) 最快最快 (2) 最慢最慢 (3) 中等中等 (4) 不能確定不能確定二、焓(二、焓(H)與恒壓過(guò)程熱()與恒壓過(guò)程熱(Qp)1.焓(焓(H)對(duì)無(wú)有效功條件下進(jìn)行的恒壓過(guò)程有:對(duì)無(wú)有效功條件下進(jìn)行的恒壓過(guò)程有: U = Qp p外外(V2 V1) U2U1 = Qp p2V2 + p1V1 (U2 + p2V2)(U1 + p1V1) = Qp

16、(U + pV) 2(U + pV) 1 = Qp令令 H U + pV 稱之為焓,是一個(gè)狀態(tài)函數(shù),稱之為焓,是一個(gè)狀態(tài)函數(shù),容量性質(zhì)容量性質(zhì) ,且,且 H = Qp ,與與 U = QV 相似相似H = U + pV 說(shuō)明焓是體系性質(zhì),說(shuō)明焓是體系性質(zhì),不能認(rèn)為只有恒壓過(guò)程才有焓。不能認(rèn)為只有恒壓過(guò)程才有焓。焓具有能量的量綱,但不是能量,焓具有能量的量綱,但不是能量,注意注意pV與與p V是不同的,只有恒壓過(guò)程焓變量是不同的,只有恒壓過(guò)程焓變量 H = Qp = U (p V ) = 熱力學(xué)能變化量熱力學(xué)能變化量 體積功體積功 才有能量交換量的物理意義。才有能量交換量的物理意義。非恒壓過(guò)程:

17、非恒壓過(guò)程: H Qp而是而是 H = U + p V + V p = Q + W + V p 2. 理想氣體的焓理想氣體的焓因?yàn)橐驗(yàn)?pV = nRT 所以,對(duì)理想氣體有:所以,對(duì)理想氣體有: H = U + pV = U + nRT = f(T)對(duì)非理想氣體有:對(duì)非理想氣體有: H = f(p,T)三、熱容三、熱容1. 定義:在不發(fā)生相變和化學(xué)變化的前提下,體系與定義:在不發(fā)生相變和化學(xué)變化的前提下,體系與環(huán)境交換的熱環(huán)境交換的熱(Q)與由此引起的溫度變化值與由此引起的溫度變化值(T )之之比稱為體系的熱容值。在一定變溫范圍內(nèi)求得平均比稱為體系的熱容值。在一定變溫范圍內(nèi)求得平均熱容,當(dāng)熱容

18、,當(dāng)T0時(shí),得真熱容。時(shí),得真熱容。2. 恒壓熱容恒壓熱容(Cp)與恒容熱容與恒容熱容(CV)在在無(wú)非體積功無(wú)非體積功的條件下,對(duì)的條件下,對(duì)恒容過(guò)程恒容過(guò)程有:有: VVTUC UQd 代入熱容的定義式得代入熱容的定義式得ppTHC HQd代入熱容的定義式得代入熱容的定義式得在在無(wú)非體積功無(wú)非體積功的條件下,對(duì)的條件下,對(duì)恒壓過(guò)程恒壓過(guò)程有:有:因?yàn)橐驗(yàn)?dH = dU + d(pV ),故恒壓熱容故恒壓熱容(Cp)與恒容熱容與恒容熱容(CV)的關(guān)系為:的關(guān)系為: Cp dT = CV dT + d(pV )對(duì)理想氣體:對(duì)理想氣體:d(pV) = nRdT 則則 Cp = CV + nR 對(duì)

19、對(duì)1mol氣體有:氣體有:Cp,m = CV ,m + R 即即 Cp,m CV ,m = R對(duì)非理想氣體可以導(dǎo)出對(duì)非理想氣體可以導(dǎo)出pTVpTVpVUCC 對(duì)凝聚態(tài)體系可導(dǎo)出對(duì)凝聚態(tài)體系可導(dǎo)出Cp CV , Cp,mCV ,m 4.理想氣體熱容理想氣體熱容 單原子理想氣體單原子理想氣體 CV,m= 1.5R Cp,m= 2.5R 雙原子理想氣體雙原子理想氣體 CV,m= 2.5R Cp,m= 3.5R 多原子理想氣體多原子理想氣體 Cp,m 4R3.熱容與溫度的關(guān)系熱容與溫度的關(guān)系 Cp,m=+ bT + cT -2 + (1) Cp,m=+ bT + cT 2 + (2)四、熱力學(xué)第一定律

20、對(duì)各種變化過(guò)程的應(yīng)用四、熱力學(xué)第一定律對(duì)各種變化過(guò)程的應(yīng)用1.簡(jiǎn)單狀態(tài)變化簡(jiǎn)單狀態(tài)變化(1)凝聚態(tài)體系凝聚態(tài)體系 特點(diǎn)是:特點(diǎn)是:V 0,體積功,體積功W 0,且,且Cp CVQHTnCTnCUTTpTTV 2121ddm,m,恒壓變溫有:恒壓變溫有:恒溫變壓有:恒溫變壓有:0d21m, TTVTnCQUpVH (2)氣體體系)氣體體系自由膨脹:自由膨脹:特點(diǎn)是特點(diǎn)是 p外外=0,則,則W = 0速度快速度快 Q 0,則,則U = 0 對(duì)理想氣體:對(duì)理想氣體:T = 0,則,則H = 0 對(duì)非理想氣體:對(duì)非理想氣體: H = U + (pV) = p2V2 p1V1恒容過(guò)程恒容過(guò)程特點(diǎn)是特點(diǎn)是

21、 V = 0,則,則 W = 0 對(duì)理想氣體對(duì)理想氣體 U = nCV,mT , H = nCp,mT恒壓過(guò)程恒壓過(guò)程特點(diǎn)是特點(diǎn)是 p體體= p外外= p,故,故 W = p V 21dm,TTVTnCQU故故 H = U + Vp 21dm,TTpTnCQHU = H p V 對(duì)理想氣體對(duì)理想氣體 U = nCV,mT ,H = nCp,mT W = p V = nRT恒溫過(guò)程(只討論理想氣體的恒溫過(guò)程)恒溫過(guò)程(只討論理想氣體的恒溫過(guò)程)特點(diǎn)是特點(diǎn)是 T = 0,對(duì)理想氣體有,對(duì)理想氣體有 U =H = 0恒溫可逆過(guò)程恒溫可逆過(guò)程12lnd)d(2121VVnRTVVnRTVpWQVVVV

22、 恒溫不可逆過(guò)程:恒溫不可逆過(guò)程: 計(jì)算要依過(guò)程特點(diǎn)而定計(jì)算要依過(guò)程特點(diǎn)而定絕熱過(guò)程絕熱過(guò)程特點(diǎn)是特點(diǎn)是 Q = 0,則,則U = W ,H =U + (pV)對(duì)理想氣體:對(duì)理想氣體: U = nCV,mT,H = nCp,mT絕熱可逆過(guò)程絕熱可逆過(guò)程 可以導(dǎo)出:可以導(dǎo)出:絕熱可逆過(guò)程方程絕熱可逆過(guò)程方程(見(jiàn)教材(見(jiàn)教材181頁(yè))頁(yè))根據(jù)方程(根據(jù)方程(4-36)得:)得:p1V1= p2V2=K UTnCHmp , 2121d)(d)(VVVVVVKVpWU 故:故:絕熱不可逆過(guò)程:絕熱不可逆過(guò)程: 絕熱可逆過(guò)程方程不能用!絕熱可逆過(guò)程方程不能用! 由相同的始態(tài)出發(fā),分別沿絕熱可逆和絕由相同

23、的始態(tài)出發(fā),分別沿絕熱可逆和絕熱不可逆途徑所達(dá)到的末態(tài)一定是不同的!熱不可逆途徑所達(dá)到的末態(tài)一定是不同的!體系絕熱可逆膨脹與絕熱不可逆膨脹所達(dá)到的末態(tài)體體系絕熱可逆膨脹與絕熱不可逆膨脹所達(dá)到的末態(tài)體積相同時(shí),可逆體系對(duì)外作功大于不可逆體系對(duì)外作積相同時(shí),可逆體系對(duì)外作功大于不可逆體系對(duì)外作功,這證明可逆功不可逆功!功,這證明可逆功不可逆功!絕熱可逆與恒溫可逆比較:恒溫可逆功最大!絕熱可逆與恒溫可逆比較:恒溫可逆功最大! 末態(tài)體積相同末態(tài)體積相同 V1 V2pP溫溫(2)P絕絕(2)P1P2 V絕絕(2) V溫溫(2) 末態(tài)壓強(qiáng)相同末態(tài)壓強(qiáng)相同2.相態(tài)變化相態(tài)變化 固固 液,固液,固 氣,液氣,

24、液 氣,固氣,固1 固固2分可逆相變和不可逆相變兩種情況:分可逆相變和不可逆相變兩種情況:(1)可逆相變)可逆相變?cè)谡O嘧凕c(diǎn)處進(jìn)行的相變過(guò)程可視為在正常相變點(diǎn)處進(jìn)行的相變過(guò)程可視為恒溫恒壓恒溫恒壓可逆過(guò)程可逆過(guò)程 Qp=H,稱為相變熱,稱為相變熱,如蒸發(fā)熱如蒸發(fā)熱(vapH),升華熱,升華熱(subH),熔化熱,熔化熱( fusH)等,等,或或vapHm, subHm,fusHm,等等。等等。W =pV,U = Q+W =trsHpV看例看例4-10,注意計(jì)算過(guò)程中的近似處理:,注意計(jì)算過(guò)程中的近似處理:考慮冰融化時(shí):考慮冰融化時(shí):V 0,則,則UH考慮水蒸發(fā)時(shí):考慮水蒸發(fā)時(shí): V氣氣 V液

25、,液, 則則V = V氣氣 V液液 V氣氣 , W =pV pV氣氣 = nRT(2)不可逆相變)不可逆相變非正常相變過(guò)程,設(shè)計(jì)同始末態(tài)可逆過(guò)程來(lái)計(jì)非正常相變過(guò)程,設(shè)計(jì)同始末態(tài)可逆過(guò)程來(lái)計(jì)算算狀態(tài)函數(shù)狀態(tài)函數(shù)的變化值。的變化值。解:設(shè)計(jì)一個(gè)始末態(tài)與之對(duì)應(yīng)的可逆過(guò)程解:設(shè)計(jì)一個(gè)始末態(tài)與之對(duì)應(yīng)的可逆過(guò)程H2O(l), 105、po oH2O(g), 105、2po oH2O(l), 100、po oH2O(g), 100、po oH2O(g), 105、po例:將過(guò)熱水從例:將過(guò)熱水從105、p蒸發(fā)成蒸發(fā)成105、2p的水蒸氣。的水蒸氣。求求H和和U。21(l)dm,111TTpTnCHQU過(guò)程:

26、過(guò)程:W10,過(guò)程:過(guò)程:W2 - pVg = -nRT,U2 = Q2 + W2= nvapHmnRTH2 = Q2 = nvapHm W3 = - pV = - p(V1V2) = nR(T2T1) 過(guò)程:過(guò)程:U3 = Q3 + W3,12(g)dm,33TTpTnCQH過(guò)程:過(guò)程:U4= H4 = 0 U = U1 + U2 + U3 + U4 H = H1 + H2 + H3 + H4注意:功和熱不是狀態(tài)函數(shù),不能按對(duì)應(yīng)可逆過(guò)程的功注意:功和熱不是狀態(tài)函數(shù),不能按對(duì)應(yīng)可逆過(guò)程的功和熱之代數(shù)和計(jì)算,只能按原過(guò)程計(jì)算。和熱之代數(shù)和計(jì)算,只能按原過(guò)程計(jì)算。 H2O(l), 105、po o H2O(g), 105、2po oV = Vg Vl Vg,故,故 W 2pVg =2nRT則:則:Q = U W = U + 2nRT五、焦耳五、焦耳湯姆遜效應(yīng)湯姆遜效應(yīng)左側(cè):左側(cè):p1V1,右側(cè):,右側(cè):p2V2,W = p1V1 p2V2 , Q = 0, U = U2 U1 = W = p1V1 p2V2則則 U2+ p2V2 = U1+ p1V1,因?yàn)橐驗(yàn)?H = U + pV所以所以 H1 = H2 ,即:,即:H = 0 實(shí)際氣體節(jié)流膨脹為實(shí)際氣體節(jié)流膨脹為恒焓恒焓 過(guò)程!過(guò)程!V1V2p1p2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論