建筑電氣外文文獻.doc_第1頁
建筑電氣外文文獻.doc_第2頁
建筑電氣外文文獻.doc_第3頁
建筑電氣外文文獻.doc_第4頁
建筑電氣外文文獻.doc_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

提高個人的生活質(zhì)量,通過他們的智能家居 該項目的假設是:可以增加一個人的生活質(zhì)量的“智能技術”集成到他們的家庭環(huán)境。這個假設是非常廣泛的,因此,研究人員將調(diào)查它考慮到多方面的,潛在的過度研磨,分節(jié)的人口。特別是,該項目將重點放在與衛(wèi)生保健需求的環(huán)節(jié),因為它認為,這些子章節(jié)將獲得最大的受益于這種增強的方法住房。兩個研究問題流從這一假說:什么是保健,可以改善通過“智能住宅”的問題,什么是技術問題需要解決,讓“智能住宅”建造?雖然存在少量的措施,在加拿大境外,據(jù)稱這方面的調(diào)查,沒有這方面的全球視野。工作往往是在小范圍內(nèi)的各個部分是如何有助于實現(xiàn)更大的目標只有有限的想法。這個項目有一個非常強烈的責任感,并認為,如果沒有這一全球性的方向,其他措施將失敗,以解決各部分的重要問題,而且正確的全局方向的總和的部分會產(chǎn)生更大的回報比的各個組成部分。這個新的領域與業(yè)務流程工程領域,有許多相似之處,很多產(chǎn)品失敗的原因只考慮一個子集的問題,通常是技術的子集。成功的項目和實施才開始啟動,當人們開始認識到,一個全面的方法是至關重要的。這種整體性的要求也適用于領域的“聰明屋”,如果我們真的希望它有利益于社區(qū),而不僅僅是技術的興趣。話雖如此,下面列出的大部分工作是非常重要的,在其個人的主題包含了大量新奇的。 醫(yī)療保健和保障性住房: 至目前為止,很少有人協(xié)調(diào),研究如何“聰明屋”的技術可以幫助體弱的老人留在家里,或降低成本所經(jīng)歷的非正式照顧者。因此,建議研究的目的是確定幫助老年人保持自己的獨立性和幫助照顧者維持他們的愛心活動中的各種住宅技術的實用性。 整體設計的研究是集中在兩個群體的老年人。首先是老人出院急性護理環(huán)境的潛在能力下降,保持獨立。一個例子是有髖關節(jié)置換手術的老年人。本集團可能會受益于技術,這將有助于他們成為適應他們的行動不便。第二個是老年人有慢性健康問題,如老年癡呆癥和接受援助的非正式護理員的生活在距離。關心的高級生活的距離是非正式照顧者在照顧者的職業(yè)倦怠的高風險。監(jiān)測的關心,高級健康和安全是通過這樣照顧者的重要任務之一。如地面?zhèn)鞲衅骱驮L問控制來確保安全的入侵者或指示私奔與老年癡呆癥的高級設備,可以減少護理員的時間花在上下班的高級監(jiān)控。 對于這兩種樣品,試驗將包括長時間內(nèi)的“聰明屋”的居住。急性護理醫(yī)院出院急性護理的老年人。這些老年人照顧的非正式照顧者的距離可以招募老年癡呆癥診斷診所或通過請求照顧者喘息的機會。 數(shù)量有限的臨床和醫(yī)療服務研究已進行了復雜的健康問題,在老年人中控制的環(huán)境中,如為代表的“智能家居”。例如,它被稱為夜視老人是可憐的,但很少有有關醒來后照明或夜間活動的最佳水平。跌倒是老年人的一個主要問題,它導致受傷,殘疾和額外的醫(yī)療費用。對于那些癡呆的疾病,安全的關鍵問題是在性能日常生活活動(ADL)。至關重要的是,我們能夠監(jiān)控病人會下降,在ADL。患者和照顧者的活動進行監(jiān)測和數(shù)據(jù)將被收集在下列情況下。 項目將集中于亞人群,以收集科學數(shù)據(jù),其條件和技術的影響,在他們的生活方式。例如: 穩(wěn)定的慢性中風后的殘疾和他們的照顧者的人:研究優(yōu)化模型,對于此類患者(這些患者可能有疏忽,偏癱,失語和判斷問題)的各種傳感器的類型和位置,在行走運動的發(fā)展模式研究,使用輪椅或拐杖上各種不同類型的地板材料,研究照顧者支持監(jiān)測頻率和位置的瀑布;智能家電,以評估的價值為中風病人及照顧者對信息進行評估,并通過電子醫(yī)療技術;通信技術促進遠程家庭護理評估技術接口,用于遠程家庭護理的工作人員和客戶的各種照明部分的房子,以評估最有效的方法,修改或開發(fā)新技術,以提高舒適性和便利性中風患者和照顧者,以評估值的監(jiān)控系統(tǒng),協(xié)助照顧者。 人與阿爾茨海默氏病和他們的照顧者:通過智能房子陌生的環(huán)境的影響,以評估他們的能力,以進行自我保健和沒有提示的情況下,評估他們的能力,以使用不熟悉的設備中的智能房子,以評估和監(jiān)測人與阿爾茨海默氏癥的運動方式,評估和監(jiān)控跌倒或徘徊;評估的類型和型號的傳感器,以監(jiān)測患者的效果進行評估,墻面的顏色為病人和照顧者適當?shù)恼彰?,以評估值。 普適計算技術: 無處不在的計算基礎設施被視為在家里的“智能”的骨干。在與無處不在的計算系統(tǒng),這個系統(tǒng)的主要組成部分是:陣列傳感器,通信基礎設施和軟件控制(基于軟件代理)基礎設施。同樣,它被認為是必要的,從整體上研究這個話題。傳感器設計:在這里研究的重點將是發(fā)展的(微型)傳感器和傳感器陣列使用智能材料,如:壓電材料,磁致伸縮材料和形狀記憶合金(形狀記憶合金)。特別是,形狀記憶合金是一類智能材料,是有吸引力的用于感測和致動的應用,主要是因為它們的異常高的工作輸出/體積比相比,智能材料的形狀記憶合金進行適當?shù)臋C械和熱負荷的制度時,經(jīng)過固固相變,導致在一個宏觀的尺寸和形狀的變化,這種變化是通過反轉(zhuǎn)的熱機械加載收回,并且被稱為一個單向形狀記憶的效果。由于這種材料的功能,形狀記憶合金可以用來作為一個傳感器和致動器。一個非常最近的發(fā)展是努力,將形狀記憶合金在微機電系統(tǒng)(MEMS)等,這些材料可以使用作為微傳感器和致動器的組成部分。 MEMS領域的活動,其中一些技術已經(jīng)足夠成熟,可能的商業(yè)應用出現(xiàn)。一些例子是微化學分析儀,濕度和壓力傳感器,MEMS流量控制,合成射流激勵器和光學MEMS(下一代互聯(lián)網(wǎng))。將形狀記憶合金在MEMS研究界是一個相對較新的努力,據(jù)我們所知,只有一組(格雷格卡門教授,機械工程,美國加州大學洛杉磯分校)已經(jīng)成功地演示了動態(tài)特性,基于SMA- MEMS。在這里,重點將是利用傳感和驅(qū)動功能的智能材料設計和制造有用的和經(jīng)濟上可行的微型傳感器和執(zhí)行器。 通訊:“智能屋”的建設和使用提供了廣泛的機會,以家庭為基礎的無線和有線通信服務來分析和驗證。雖然其中一些已經(jīng)廣泛地探討,許多問題已經(jīng)得到很少或根本沒有注意。建議探討以下問題:測量的信道統(tǒng)計在住宅環(huán)境:室內(nèi)無線信道統(tǒng)計的知識是至關重要的,使高效率的發(fā)射器和接收器的設計,以及確定適當水平的信號功率,數(shù)據(jù)傳輸速率,調(diào)制技術,差錯控制碼的的無線鏈路。干擾,信道失真,頻譜限制,產(chǎn)生的結果為殘疾人(輪椅的設備,四站,監(jiān)控設備等)特別感興趣。 增強室內(nèi)無線通信天線的設計,分析和驗證。室內(nèi)無線通信的需要結構緊湊,堅固耐用的天線。新的天線設計,優(yōu)化所需的數(shù)據(jù)傳輸速率,工作頻率和空間的要求,可以考慮。 最近已經(jīng)商業(yè)化的驗證和分析的室內(nèi)無線網(wǎng)絡:無線網(wǎng)絡標準,家庭自動化操作。整合這些系統(tǒng)的智能家居中的一個或多個提供的機會,以驗證這些系統(tǒng)的操作,檢查其局限性,并確定是否過度設計標準,以滿足一般的需求。有效的通信線路計劃確定為“智能家居”:存在有線和無線基礎設施的性能/成本權衡。不同的無線網(wǎng)絡配置的測量和分析,以便確定適當?shù)木W(wǎng)絡設計。代價較大規(guī)模的通信系統(tǒng):室內(nèi)無線網(wǎng)絡的室內(nèi)通信系統(tǒng)的協(xié)調(diào)是當?shù)氐淖∷浇?。存在更廣泛的大規(guī)模網(wǎng)絡,如蜂窩式電話網(wǎng)絡,固定無線網(wǎng)絡,和基于衛(wèi)星的通信網(wǎng)絡。保健監(jiān)測的目的,這些服務之間的相容性的可行性和實用性,老年癡呆癥患者的跟蹤,等需要考慮。 軟件代理和他們的工程:嵌入式代理可以被認為是相當于提供一個友好的專家與產(chǎn)品。嵌入式代理智能建筑帶來許多的挑戰(zhàn),無論是在水平的設計方法以及詳細的實施。在這方面的項目將包括: 人類居住環(huán)境的大型智能體系統(tǒng)的架構:住宅長期護理的環(huán)境中成功部署代理技術需要新的架構,這些系統(tǒng)的設計。一個合適的架構應該是簡單而靈活地提供實時有效的代理操作。同時,它應該是分層的剛性,以允許執(zhí)行的規(guī)則和限制,確保的居民建筑系統(tǒng)的安全。必須解決這些矛盾的要求,通過設計一個新的架構,將系統(tǒng)中的所有代理共享。 強大的決策和控制結構,學習代理:實現(xiàn)終身學習的能力,代理商需要配備強大的機制,學習和適應。隔離使用一些傳統(tǒng)的學習系統(tǒng)是不可能的,因為這些藥物的高預期壽命。我們要發(fā)展的幾個學習和表現(xiàn)方法,在一個新興的時尚相結合的混合式學習系統(tǒng)。這樣的系統(tǒng)會采用不同的方法,根據(jù)自己的成熟度和量的變化,以適應新的情況或?qū)W習新的行為。為了應付高層次的不確定性從這些來源不可預測的人類用戶的互動,強大的行為將被設計和實施能夠處理不同類型的不確定性(如概率和模糊不確定性)采用了先進的技術,感覺和數(shù)據(jù)基于計算智能技術的融合和推理機制。 自動建?,F(xiàn)實世界的對象,包括個別住戶:這個問題在這里是:“定位和提取”的個性和習慣一個人的代表性是至關重要的信息;系統(tǒng)是“遵循和采用”個人的情緒和行為的發(fā)展。基于數(shù)據(jù)挖掘和進化的技術,解決方案,將利用:(1)聚類方法,分類的樹木和關聯(lián)發(fā)現(xiàn)重要的不同屬性之間的關系屬于個人的各種功能的分類和分區(qū)技術,這是一個基本要素在尋找一個人的行為模式,和(2)神經(jīng)模糊和以規(guī)則為基礎的系統(tǒng),用于個人的特性發(fā)展模式的學習和適應能力,這是必要的估計和預測的潛在活動和遠期規(guī)劃。 調(diào)查的框架普適計算的特點:考慮分布式和基于互聯(lián)網(wǎng)的系統(tǒng),這也許是最常見的,無處不在的計算,最大的影響是不特定的軟件工程過程,但是從現(xiàn)有的軟件框架或工具包“,這讓在這些領域的許多系統(tǒng)的快速建設和部署。因此,它提出的“聰明屋”無處不在的計算基礎設施的建設也應利用作為一個軟件工程的研究。研究人員將首先參觀一些真正的無處不在的計算系統(tǒng)中存在的今天,試圖建立一個初始圖片的功能的框架。 (這種方法有明顯的相似之處伽瑪?shù)姆椒?,約翰遜和Vlissides部署他們的開創(chuàng)性工作,“設計模式”。不幸的是,在他們的工作相比,這里的樣本量將是非常小的,因此,額外的工作將需要可靠的答案。)初步框架,隨后將作為智能家居的軟件系統(tǒng)的基礎上。毫無疑問,這個初步框架將大幅進化的系統(tǒng)建設過程中,無處不在的計算環(huán)境的要求展開。它被認為是一個真正有用的和可靠的神器,體系建設等密切參與是一個必要的組成部分。施工階段的末尾,預計將產(chǎn)生一個穩(wěn)定的框架,它可以表明,大量的基本特征(或圖案)已發(fā)現(xiàn)的普適計算。 無處不在的計算問題的確認和驗證(VV):希望調(diào)查確認和驗證(VV)普適計算的問題,房子會提供一個測試床。房子將被用作評估車輛,以確定哪些VV技術,工具或方法,如果沒有,在此環(huán)境中是有用的。此外,計劃提供給全世界的研究人員使用這種車輛的增加,使這個試驗設施。長遠來看,預計這種基礎設施所提供的設施,將演變成一個國際公認的“標桿”的網(wǎng)站VV活動中無處不在的計算。 其他技術領域: 該項目還計劃調(diào)查了一些其他領域,如照明系統(tǒng),安防系統(tǒng),加熱,通風和空調(diào)等,例如,能源效率方面,該項目目前預計承擔的兩項研究: 測定絕緣百葉窗的效果:外部絕緣百葉窗隨著時間的推移是無效的,因為密封問題。室內(nèi)百葉窗是優(yōu)越的,可以用來幫助減少熱量的損失。然而,它們的移動和定位,需要適當?shù)目刂?,以防止由于熱沖擊的窗口破損。開啟或關閉周期的啟動,將測得的外部光線水平的基礎上,目前的內(nèi)部加熱水平;當前和預期的使用由現(xiàn)有居民的房子,等等。 替代能源發(fā)電的能源使用模式的比較可以很容易地通過檢測每個設備監(jiān)控。天然氣和電力的主要能源供應是自然的選擇。熱空間和溫水中的燃料的化學能的轉(zhuǎn)換可以通過常規(guī)方法進行,或通過使用的Volvo Penta系統(tǒng)的總能量系統(tǒng),如:有了這個系統(tǒng)中,燃料被用于功率小的內(nèi)燃機,這反過來又驅(qū)動一臺發(fā)電機,用于電能生產(chǎn)。從冷卻劑和排氣的余熱被用來加熱水供國內(nèi)使用和空間加熱。多余的電力反饋到電網(wǎng),或儲存在蓄電池中。在未來某一日期,計劃替代燃料電池的總能量系統(tǒng)允許的直接比較兩個先進的系統(tǒng)性能。Increasing an individuals quality of life via their intelligent homeThe hypothesis of this project is: can an individuals quality of life be increased by integrating “intelligent technology” into their home environment. This hypothesis is very broad, and hence the researchers will investigate it with regard to various, potentially over-lapping, sub-sections of the population. In particular, the project will focus on sub-sections with health-care needs, because it is believed that these sub-sections will receive the greatest benefit from this enhanced approach to housing. Two research questions flow from this hypothesis: what are the health-care issues that could be improved via “intelligent housing”, and what are the technological issues needing to be solved to allow “intelligent housing” to be constructed? While a small number of initiatives exist, outside Canada, which claim to investigate this area, none has the global vision of this area. Work tends to be in small areas with only a limited idea of how the individual pieces contribute towards a greater goal. This project has a very strong sense of what it is trying to attempt, and believes that without this global direction the other initiatives will fail to address the large important issues described within various parts of this proposal, and that with the correct global direction the sum of the parts will produce much greater rewards than the individual components. This new field has many parallels with the field of business process engineering, where many products fail due to only considering a sub-set of the issues, typically the technology subset. Successful projects and implementations only started flow when people started to realize that a holistic approach was essential. This holistic requirement also applies to the field of “smart housing”; if we genuinely want it to have benefit to the community rather than just technological interest. Having said this, much of the work outlined below is extremely important and contains a great deal of novelty within their individual topics. Health-Care and Supportive housing:To date, there has been little coordinated research on how “smart house” technologies can assist frail seniors in remaining at home, and/or reduce the costs experienced by their informal caregivers. Thus, the purpose of the proposed research is to determine the usefulness of a variety of residential technologies in helping seniors maintain their independence and in helping caregivers sustain their caring activities.The overall design of the research is to focus on two groups of seniors. The first is seniors who are being discharged from an acute care setting with the potential for reduced ability to remain independent. An example is seniors who have had hip replacement surgery. This group may benefit from technologies that would help them become adapted to their reduced mobility. The second is seniors who have a chronic health problem such as dementia and who are receiving assistance from an informal caregiver living at a distance. Informal caregivers living at a distance from the cared-for senior are at high risk of caregiver burnout. Monitoring the cared-for senior for health and safety is one of the important tasks done by such caregivers. Devices such as floor sensors (to determine whether the senior has fallen) and access controls to ensure safety from intruders or to indicate elopement by a senior with dementia could reduce caregiver time spent commuting to monitor the senior.For both samples, trials would consist of extended periods of residence within the smart house. Samples of seniors being discharged from acute care would be recruited from acute care hospitals. Samples of seniors being cared for by informal caregivers at a distance could be recruited through dementia diagnosis clinics or through request from caregivers for respite. Limited amounts of clinical and health service research has been conducted upon seniors (with complex health problems) in controlled environments such as that represented by the “smart house”. For example, it is known that night vision of the aged is poor but there is very little information regarding the optimum level of lighting after wakening or for night activities. Falling is a major issue for older persons; and it results in injuries, disabilities and additional health care costs. For those with dementing illnesses, safety is the key issue during performance of the activities of daily living (ADL). It is vital for us to be able to monitor where patients would fall during ADL. Patients and caregivers activities would be monitored and data will be collected in the following conditions.Projects would concentrate on sub-populations, with a view to collecting scientific data about their conditions and the impact of technology upon their life styles. For example: -Persons with stable chronic disability following a stroke and their caregivers: to research optimum models, types and location of various sensors for such patients (these patients may have neglect, hemiplegia, aphasia and judgment problems); to research pattern of movements during the ambulation, use of wheel chairs or canes on various type of floor material; to research caregivers support through e-health technology; to monitor frequencies and location of the falls; to evaluate the value of smart appliances for stroke patients and caregivers; to evaluate information and communication technology set up for Tele-homecare; to evaluate technology interface for Tele-homecare staff and clients; to evaluate the most effective way of lighting the various part of the house; to modify or develop new technology to enhance comfort and convenience of stroke patients and caregivers; to evaluate the value of surveillance systems in assisting caregivers.- Persons with Alzheimers disease and their caregivers: to evaluate the effect of smart house (unfamiliar environment) on their ability to conduct self-care with and without prompting; to evaluate their ability to use unfamiliar equipment in the smart house; to evaluate and monitor persons with Alzheimers disease movement pattern; to evaluate and monitor falls or wandering; to evaluate the type and model of sensors to monitor patients; to evaluate the effect of wall color for patients and care givers; to evaluate the value of proper lighting.Technology - Ubiquitous Computing:The ubiquitous computing infrastructure is viewed as the backbone of the “intelligence” within the house. In common with all ubiquitous computing systems, the primary components with this system will be: the array of sensors, the communication infrastructure and the software control (based upon software agents) infrastructure. Again, it is considered essential that this topic is investigated holistically.Sensor design: The focus of research here will be development of (micro)-sensors and sensor arrays using smart materials, e.g. piezoelectric materials, magneto strictive materials and shape memory alloys (SMAs). In particular, SMAs are a class of smart materials that are attractive candidates for sensing and actuating applications primarily because of their extraordinarily high work output/volume ratio compared to other smart materials. SMAs undergo a solid-solid phase transformation when subjected to an appropriate regime of mechanical and thermal load, resulting in a macroscopic change in dimensions and shape; this change is recoverable by reversing the thermo mechanical loading and is known as a one-way shape memory effect. Due to this material feature, SMAs can be used as both a sensor and an actuator. A very recent development is an effort to incorporate SMAs in micro-electromechanical systems (MEMS) so that these materials can be used as integral parts of micro-sensors and actuators. MEMS are an area of activity where some of the technology is mature enough for possible commercial applications to emerge. Some examples are micro-chemical analyzers, humidity and pressure sensors, MEMS for flow control, synthetic jet actuators and optical MEMS (for the next generation internet). Incorporating SMAs in MEMS is a relatively new effort in the research community; to the best of our knowledge, only one group (Prof. Greg Carman, Mechanical Engineering, University of California, Los Angeles) has successfully demonstrated the dynamic properties of SMA-based MEMS. Here, the focus will be to harness the sensing and actuation capabilities of smart materials to design and fabricate useful and economically viable micro-sensors and actuators. Communications: Construction and use of an “intelligent house” offers extensive opportunities to analyze and verify the operation of wireless and wired home-based communication services. While some of these are already widely explored, many of the issues have received little or no attention. It is proposed to investigate the following issues: - Measurement of channel statistics in a residential environment: knowledge of the indoor wireless channel statistics is critical for enabling the design of efficient transmitters and receivers, as well as determining appropriate levels of signal power, data transfer rates, modulation techniques, and error control codes for the wireless links. Interference, channel distortion, and spectral limitations that arises as a result of equipment for the disabled (wheelchairs, IV stands, monitoring equipment, etc.) is of particular interest.- Design, analysis, and verification of enhanced antennas for indoor wireless communications. Indoor wireless communications present the need for compact and rugged antennas. New antenna designs, optimized for desired data rates, frequency of operation, and spatial requirements, could be considered.- Verification and analysis of operation of indoor wireless networks: wireless networking standards for home automation have recently been commercialized. Integration of one or more of these systems into the smart house would provide the opportunity to verify the operation of these systems, examine their limitations, and determine whether the standards are over-designed to meet typical requirements.- Determination of effective communications wiring plans for “smart homes.”: there exist performance/cost tradeoffs regarding wired and wireless infrastructure. Measurement and analysis of various wireless network configurations will allow for determination of appropriate network designs.- Consideration of coordinating indoor communication systems with larger-scale communication systems: indoor wireless networks are local to the vicinity of the residence. There exist broader-scale networks, such as the cellular telephone network, fixed wireless networks, and satellite-based communication networks. The viability and usefulness of compatibility between these services for the purposes of health-care monitoring, the tracking of dementia patients, etc needs to be considered.Software Agents and their Engineering: An embedded-agent can be considered the equivalent of supplying a friendly expert with a product. Embedded-agents for Intelligent Buildings pose a number of challenges both at the level of the design methodology as well as the resulting detailed implementation. Projects in this area will include:- Architectures for large-scale agent systems for human inhabited environment: successful deployment of agent technology in residential/extended care environments requires the design of new architectures for these systems. A suitable architecture should be simple and flexible to provide efficient agent operation in real time. At the same time, it should be hierarchical and rigid to allow enforcement of rules and restrictions ensuring safety of the inhabitants of the building system. These contradictory requirements have to be resolved by designing a new architecture that will be shared by all agents in the system. - Robust Decision and Control Structures for Learning Agents: to achieve life-long learning abilities, the agents need to be equipped with powerful mechanisms for learning and adaptation. Isolated use of some traditional learning systems is not possible due to high-expected lifespan of these agents. We intend to develop hybrid learning systems combining several learning and representation techniques in an emergent fashion. Such systems will apply different approaches based on their own maturity and on the amount of change necessary to adapt to a new situation or learn new behaviors. To cope with high levels of non-determinism (from such sources as interaction with unpredictable human users), robust behaviors will be designed and implemented capable of dealing with different types of uncertainty (e.g. probabilistic and fuzzy uncertainty) using advanced techniques for sensory and data fusion, and inference mechanisms based on techniques of computational intelligence. - Automatic modeling of real-world objects, including individual householders: The problems here are: “the locating and extracting” of information essential for representation of personality and habits of an indi

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論