




已閱讀5頁,還剩31頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第二十一章 二次根式 教材內(nèi)容 1本單元教學(xué)的主要內(nèi)容: 二次根式的概念;二次根式的加減;二次根式的乘除;最簡二次根式 2本單元在教材中的地位和作用: 二次根式是在學(xué)完了八年級下冊第十七章反比例正函數(shù)、第十八章勾股定理及其應(yīng)用等內(nèi)容的基礎(chǔ)之上繼續(xù)學(xué)習(xí)的,它也是今后學(xué)習(xí)其他數(shù)學(xué)知識的基礎(chǔ) 教學(xué)目標(biāo) 1知識與技能 (1)理解二次根式的概念 (2)理解(a0)是一個非負(fù)數(shù),()2=a(a0),=a(a0) (3)掌握(a0,b0),=;=(a0,b0),=(a0,b0) (4)了解最簡二次根式的概念并靈活運用它們對二次根式進(jìn)行加減 2過程與方法 (1)先提出問題,讓學(xué)生探討、分析問題,師生共同歸納,得出概念再對概念的內(nèi)涵進(jìn)行分析,得出幾個重要結(jié)論,并運用這些重要結(jié)論進(jìn)行二次根式的計算和化簡 (2)用具體數(shù)據(jù)探究規(guī)律,用不完全歸納法得出二次根式的乘(除)法規(guī)定,并運用規(guī)定進(jìn)行計算 (3)利用逆向思維,得出二次根式的乘(除)法規(guī)定的逆向等式并運用它進(jìn)行化簡 (4)通過分析前面的計算和化簡結(jié)果,抓住它們的共同特點,給出最簡二次根式的概念利用最簡二次根式的概念,來對相同的二次根式進(jìn)行合并,達(dá)到對二次根式進(jìn)行計算和化簡的目的 3情感、態(tài)度與價值觀 通過本單元的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計算和化簡的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,經(jīng)過探索二次根式的重要結(jié)論,二次根式的乘除規(guī)定,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力 教學(xué)重點 1二次根式(a0)的內(nèi)涵(a0)是一個非負(fù)數(shù);()2a(a0);=a(a0)及其運用 2二次根式乘除法的規(guī)定及其運用3最簡二次根式的概念 4二次根式的加減運算 教學(xué)難點 1對(a0)是一個非負(fù)數(shù)的理解;對等式()2a(a0)及=a(a0)的理解及應(yīng)用 2二次根式的乘法、除法的條件限制 3利用最簡二次根式的概念把一個二次根式化成最簡二次根式 教學(xué)關(guān)鍵 1潛移默化地培養(yǎng)學(xué)生從具體到一般的推理能力,突出重點,突破難點 2培養(yǎng)學(xué)生利用二次根式的規(guī)定和重要結(jié)論進(jìn)行準(zhǔn)確計算的能力,培養(yǎng)學(xué)生一絲不茍的科學(xué)精神 單元課時劃分 本單元教學(xué)時間約需11課時,具體分配如下: 211 二次根式 3課時 212 二次根式的乘法 3課時 213 二次根式的加減 3課時 小結(jié)與自測 2課時211 二次根式第一課時 教學(xué)內(nèi)容 二次根式的概念及其運用 教學(xué)目標(biāo) 知識與技能:理解二次根式的概念,并利用(a0)的意義解答具體題目 過程與方法: 提出問題,根據(jù)問題給出概念,應(yīng)用概念解決實際問題 情感、態(tài)度、價值觀:培養(yǎng)學(xué)生課前預(yù)習(xí)的習(xí)慣,培養(yǎng)學(xué)生利用概念解決問題的能力. 教學(xué)重難點關(guān)鍵 1重點:形如(a0)的式子叫做二次根式的概念; 2難點與關(guān)鍵:利用“(a0)”解決具體問題 教學(xué)過程 一、復(fù)習(xí)引入 (學(xué)生活動)請同學(xué)們獨立完成下列三個問題: 問題1:已知反比例函數(shù)y=,那么它的圖象在第一象限橫、縱坐標(biāo)相等的點的坐標(biāo)是_問題2:如圖,在直角三角形ABC中,AC=3,BC=1,C=90,那么AB邊的長是_ 問題3:甲射擊6次,各次擊中的環(huán)數(shù)如下:8、7、9、9、7、8,那么甲這次射擊的方差是S2,那么S=_ 老師點評:問題1:橫、縱坐標(biāo)相等,即x=y,所以x2=3因為點在第一象限,所以x=,所以所求點的坐標(biāo)(,) 問題2:由勾股定理得AB= 問題3:由方差的概念得S= . 二、探索新知 很明顯、,都是一些正數(shù)的算術(shù)平方根像這樣一些正數(shù)的算術(shù)平方根的式子,我們就把它稱二次根式因此,一般地,我們把形如(a0)的式子叫做二次根式,“”稱為二次根號 (學(xué)生活動)議一議: 1-1有算術(shù)平方根嗎? 20的算術(shù)平方根是多少? 3當(dāng)a0)、-、(x0,y0) 分析:二次根式應(yīng)滿足兩個條件:第一,有二次根號“”;第二,被開方數(shù)是正數(shù)或0 解:二次根式有:、(x0)、-、(x0,y0);不是二次根式的有:、 例2當(dāng)x是多少時,在實數(shù)范圍內(nèi)有意義? 分析:由二次根式的定義可知,被開方數(shù)一定要大于或等于0,所以3x-10,才能有意義 解:由3x-10,得:x 當(dāng)x時,在實數(shù)范圍內(nèi)有意義 三、鞏固練習(xí) 教材P練習(xí)1、2、3 四、應(yīng)用拓展 例3當(dāng)x是多少時,+在實數(shù)范圍內(nèi)有意義? 分析:要使+在實數(shù)范圍內(nèi)有意義,必須同時滿足中的0和中的x+10(解題過程略) 例4(1)已知y=+5,求的值(2)若+=0,求a2004+b2004的值 五、歸納小結(jié)(學(xué)生活動,老師點評) 本節(jié)課要掌握: 1形如(a0)的式子叫做二次根式,“”稱為二次根號 2要使二次根式在實數(shù)范圍內(nèi)有意義,必須滿足被開方數(shù)是非負(fù)數(shù) 六、布置作業(yè) 1教材P8復(fù)習(xí)鞏固1、綜合應(yīng)用5 2選用課時作業(yè)設(shè)計 第一課時作業(yè)設(shè)計 一、選擇題 1下列式子中,是二次根式的是( ) A- B C Dx 2下列式子中,不是二次根式的是( ) A B C D 3已知一個正方形的面積是5,那么它的邊長是( ) A5 B C D以上皆不對 二、填空題 1形如_的式子叫做二次根式 2面積為a的正方形的邊長為_ 3負(fù)數(shù)_平方根 三、綜合提高題 1當(dāng)x是多少時,+x2在實數(shù)范圍內(nèi)有意義? 2若+有意義,則=_ 3.使式子有意義的未知數(shù)x有( )個 A0 B1 C2 D無數(shù)4.已知a、b為實數(shù),且+2=b+4,求a、b的值21.1 二次根式(2)第二課時 教學(xué)內(nèi)容 1(a0)是一個非負(fù)數(shù); 2()2=a(a0) 教學(xué)目標(biāo)1.知識與技能:理解(a0)是一個非負(fù)數(shù)和()2=a(a0),并利用它們進(jìn)行計算和化簡 2過程與方法:通過復(fù)習(xí)二次根式的概念,用邏輯推理的方法推出(a0)是一個非負(fù)數(shù),用具體數(shù)據(jù)結(jié)合算術(shù)平方根的意義導(dǎo)出()2=a(a0);3. 情感、態(tài)度、價值觀:強化概念記憶、用聯(lián)想、類比思想嘗試去解決問題,以形成良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣. 教學(xué)重難點關(guān)鍵 1重點:(a0)是一個非負(fù)數(shù);()2=a(a0)及其運用 2難點、關(guān)鍵:用分類思想的方法導(dǎo)出(a0)是一個非負(fù)數(shù);用探究的方法導(dǎo)出()2=a(a0) 教學(xué)過程 一、復(fù)習(xí)引入 (學(xué)生活動)口答 1什么叫二次根式? 2當(dāng)a0時,叫什么?當(dāng)a0 Ba0 Ca0 Da=0 二、填空題 1(-)2=_ 2已知有意義,那么是一個_數(shù) 三、綜合提高題 1計算(1)()2 (2)-()2 (3)()2 (4)(-3)2 (5) 2把下列非負(fù)數(shù)寫成一個數(shù)的平方的形式: (1)5 (2)3.4 (3) (4)x(x0)3已知+=0,求xy的值 4在實數(shù)范圍內(nèi)分解下列因式: (1)x2-2 (2)x4-9 3x2-521.1 二次根式(3)第三課時 教學(xué)內(nèi)容 a(a0) 教學(xué)目標(biāo) 知識與技能:理解=a(a0)并利用它進(jìn)行計算和化簡過程與方法:通過具體數(shù)據(jù)的解答,探究=a(a0),并利用這個結(jié)論解決具體問題情感、態(tài)度與價值觀:潛移默化地培養(yǎng)學(xué)生從具體到一般的推理能力,掌握較好的數(shù)感、符號感. 教學(xué)重難點關(guān)鍵 1重點:a(a0) 2難點:探究結(jié)論 3關(guān)鍵:講清a0時,a才成立 教學(xué)過程 一、復(fù)習(xí)引入 老師口述并板收上兩節(jié)課的重要內(nèi)容; 1形如(a0)的式子叫做二次根式; 2(a0)是一個非負(fù)數(shù); 3()2a(a0) 那么,我們猜想當(dāng)a0時,=a是否也成立呢?下面我們就來探究這個問題 二、探究新知 (學(xué)生活動)填空: =_;=_;=_; =_;=_;=_ (老師點評):根據(jù)算術(shù)平方根的意義,我們可以得到: =2;=0.01;=;=;=0;= 因此,一般地:=a(a0) 例1 化簡 (1) (2) (3) (4)分析:因為(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可運用=a(a0)去化簡解:(1)=3 (2)=4 (3)=5 (4)=3 三、鞏固練習(xí) 教材P7練習(xí)2 四、應(yīng)用拓展 例2 填空:當(dāng)a0時,=_;當(dāng)aa,則a可以是什么數(shù)? 分析:=a(a0),要填第一個空格可以根據(jù)這個結(jié)論,第二空格就不行,應(yīng)變形,使“( )2”中的數(shù)是正數(shù),因為,當(dāng)a0時,=,那么-a0 (1)根據(jù)結(jié)論求條件;(2)根據(jù)第二個填空的分析,逆向思想;(3)根據(jù)(1)、(2)可知=a,而a要大于a,只有什么時候才能保證呢?aa,即使aa所以a不存在;當(dāng)aa,即使-aa,a0綜上,a2,化簡-分析:(略) 五、歸納小結(jié) 本節(jié)課應(yīng)掌握:=a(a0)及其運用,同時理解當(dāng)a0時,a的應(yīng)用拓展 六、布置作業(yè) 1教材P8習(xí)題211 3、4、6、8 2選作課時作業(yè)設(shè)計 第三課時作業(yè)設(shè)計 一、選擇題 1的值是( ) A0 B C4 D以上都不對 二、填空題 1-=_ 2若是一個正整數(shù),則正整數(shù)m的最小值是_ 三、綜合提高題 1先化簡再求值:當(dāng)a=9時,求a+的值,甲乙兩人的解答如下: 甲的解答為:原式=a+=a+(1-a)=1;乙的解答為:原式=a+=a+(a-1)=2a-1=17兩種解答中,_的解答是錯誤的,錯誤的原因是_2. 若-3x2時,試化簡x-2+。212 二次根式的乘除第一課時 教學(xué)內(nèi)容 (a0,b0),反之=(a0,b0)及其運用 教學(xué)目標(biāo) 知識與技能:理解(a0,b0),=(a0,b0),并利用它們進(jìn)行計算和化簡過程與方法:由具體數(shù)據(jù),發(fā)現(xiàn)規(guī)律,導(dǎo)出(a0,b0)并運用它進(jìn)行計算;利用逆向思維,得出=(a0,b0)并運用它進(jìn)行解題和化簡情感、態(tài)度與價值觀:經(jīng)過探索二次根式的重要結(jié)論,二次根式的乘除規(guī)定,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力 教學(xué)重難點關(guān)鍵 重點:(a0,b0),=(a0,b0)及它們的運用 難點:發(fā)現(xiàn)規(guī)律,導(dǎo)出(a0,b0) 關(guān)鍵:要講清(a0,b、0),并驗證你的結(jié)論212 二次根式的乘除第二課時 教學(xué)內(nèi)容 =(a0,b0),反過來=(a0,b0)及利用它們進(jìn)行計算和化簡 教學(xué)目標(biāo) 知識與技能:理解=(a0,b0)和=(a0,b0)及利用它們進(jìn)行運算過程與方法:利用具體數(shù)據(jù),通過學(xué)生練習(xí)活動,發(fā)現(xiàn)規(guī)律,歸納出除法規(guī)定,并用逆向思維寫出逆向等式及利用它們進(jìn)行計算和化簡情感、態(tài)度與價值觀:發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力 教學(xué)重難點關(guān)鍵 1重點:理解=(a0,b0),=(a0,b0)及利用它們進(jìn)行計算和化簡 2難點關(guān)鍵:發(fā)現(xiàn)規(guī)律,歸納出二次根式的除法規(guī)定 教學(xué)過程 一、復(fù)習(xí)引入 (學(xué)生活動)請同學(xué)們完成下列各題: 1寫出二次根式的乘法規(guī)定及逆向等式 2填空 (1)=_,=_; (2)=_,=_; (3)=_,=_規(guī)律:_; _;_ 二、探索新知 剛才同學(xué)們都練習(xí)都很好,上臺的同學(xué)也回答得十分準(zhǔn)確,根據(jù)大家的練習(xí)和回答,我們可以得到: 一般地,對二次根式的除法規(guī)定:=(a0,b0),反過來,=(a0,b0) 下面我們利用這個規(guī)定來計算和化簡一些題目 例1計算:(1) (2) (3) (4) 分析:上面4小題利用=(a0,b0)便可直接得出答案解:(1)=2 (2)=2(3)=2(4)=2 例2化簡: (1) (2) (3) (4) 分析:直接利用=(a0,b0)就可以達(dá)到化簡之目的解:(1)= (2)= (3)= (4)= 三、鞏固練習(xí) 教材P14 練習(xí)1 四、應(yīng)用拓展 例3已知,且x為偶數(shù),求(1+x)的值分析:式子=,只有a0,b0時才能成立因此得到9-x0且x-60,即6x9,又因為x為偶數(shù),所以x=8 解:由題意得,即 60)和=(a0,b0)及其運用 六、布置作業(yè) 1教材P15 習(xí)題212 2、7、8、9 2選用課時作業(yè)設(shè)計 第二課時作業(yè)設(shè)計 一、選擇題 1計算的結(jié)果是( ) A B C D2閱讀下列運算過程:, 數(shù)學(xué)上將這種把分母的根號去掉的過程稱作“分母有理化”,那么,化簡的結(jié)果是( ) A2 B6 C D 二、填空題 1分母有理化:(1) =_;(2) =_;(3) =_. 2已知x=3,y=4,z=5,那么的最后結(jié)果是_ 21.2 二次根式的乘除(3)第三課時 教學(xué)內(nèi)容 最簡二次根式的概念及利用最簡二次根式的概念進(jìn)行二次根式的化簡運算 教學(xué)目標(biāo) 知識與技能:理解最簡二次根式的概念,并運用它把不是最簡二次根式的化成最簡二次根式過程與方法:通過計算或化簡的結(jié)果來提煉出最簡二次根式的概念,并根據(jù)它的特點來檢驗最后結(jié)果是否滿足最簡二次根式的要求情感、態(tài)度與價值觀:通過交流與合作學(xué)習(xí),培養(yǎng)學(xué)生良好的數(shù)學(xué)思維。 重難點關(guān)鍵 1重點:最簡二次根式的運用 2難點關(guān)鍵:會判斷這個二次根式是否是最簡二次根式 教學(xué)過程 一、復(fù)習(xí)引入 (學(xué)生活動)請同學(xué)們完成下列各題(請三位同學(xué)上臺板書) 1計算(1),(2),(3) 老師點評:=,=,= 2現(xiàn)在我們來看本章引言中的問題:如果兩個電視塔的高分別是h1km,h2km,那么它們的傳播半徑的比是_ 它們的比是 二、探索新知 觀察上面計算題1的最后結(jié)果,可以發(fā)現(xiàn)這些式子中的二次根式有如下兩個特點: 1被開方數(shù)不含分母; 2被開方數(shù)中不含能開得盡方的因數(shù)或因式 我們把滿足上述兩個條件的二次根式,叫做最簡二次根式 那么上題中的比是否是最簡二次根式呢?如果不是,把它們化成最簡二次根式 學(xué)生分組討論,推薦34個人到黑板上板書老師點評:不是=. 例1(1) ; (2) ; (3) 例2如圖,在RtABC中,C=90,AC=2.5cm,BC=6cm,求AB的長 解:因為AB2=AC2+BC2 所以AB=6.5(cm) 因此AB的長為6.5cm 三、鞏固練習(xí) 教材P14 練習(xí)2、3 四、應(yīng)用拓展例3觀察下列各式,通過分母有理數(shù),把不是最簡二次根式的化成最簡二次根式:=-1,=-, 同理可得:=-, 從計算結(jié)果中找出規(guī)律,并利用這一規(guī)律計算 (+)(+1)的值 分析:由題意可知,本題所給的是一組分母有理化的式子,因此,分母有理化后就可以達(dá)到化簡的目的 解:原式=(-1+-+-+-)(+1) =(-1)(+1) =2002-1=2001 五、歸納小結(jié) 本節(jié)課應(yīng)掌握:最簡二次根式的概念及其運用 六、布置作業(yè) 1教材P15 習(xí)題212 3、7、102選用課時作業(yè)設(shè)計 第三課時作業(yè)設(shè)計 一、選擇題 1如果(y0)是二次根式,那么,化為最簡二次根式是( ) A(y0) B(y0) C(y0) D以上都不對 2把(a-1)中根號外的(a-1)移入根號內(nèi)得( ) A B C- D- 3在下列各式中,化簡正確的是( )A=3 B=C=a2 D =x4化簡的結(jié)果是( ) A- B- C- D- 二、填空題 1化簡=_(x0) 2a化簡二次根式號后的結(jié)果是_ 三、綜合提高題 1 若x、y為實數(shù),且y=,求的值 21.3 二次根式的加減(1)第一課時 教學(xué)內(nèi)容 二次根式的加減 教學(xué)目標(biāo) 知識與技能:理解和掌握二次根式加減的方法過程與方法:先提出問題,分析問題,在分析問題中,滲透對二次根式進(jìn)行加減的方法的理解再總結(jié)經(jīng)驗,用它來指導(dǎo)根式的計算和化簡情感、態(tài)度與價值觀:培養(yǎng)合作精神,滲透類比、轉(zhuǎn)化思想. 重難點關(guān)鍵 1重點:二次根式化簡為最簡根式 2難點關(guān)鍵:會判定是否是最簡二次根式 教學(xué)過程 一、復(fù)習(xí)引入 學(xué)生活動:計算下列各式 (1)2x+3x; (2)2x2-3x2+5x2; (3)x+2x+3y; (4)3a2-2a2+a3 教師點評:上面題目的結(jié)果,實際上是我們以前所學(xué)的同類項合并同類項合并就是字母不變,系數(shù)相加減 二、探索新知 學(xué)生活動:計算下列各式(1)2+3 (2)2-3+5 (3)+2+3 (4)3-2+ 老師點評: (1)如果我們把當(dāng)成x,不就轉(zhuǎn)化為上面的問題嗎? 2+3=(2+3)=5 (2)把當(dāng)成y; 2-3+5=(2-3+5)=4=8 (3)把當(dāng)成z; +2+ =2+2+3=(1+2+3)=6 (4)看為x,看為y 3-2+ =(3-2)+ =+ 因此,二次根式的被開方數(shù)相同是可以合并的,如2與表面上看是不相同的,但它們可以合并嗎?可以的 (板書)3+=3+2=5 3+=3+3=6 所以,二次根式加減時,可以先將二次根式化成最簡二次根式,再將被開方數(shù)相同的二次根式進(jìn)行合并 例1計算 (1)+ (2)+ 分析:第一步,將不是最簡二次根式的項化為最簡二次根式;第二步,將相同的最簡二次根式進(jìn)行合并 解:(1)+=2+3=(2+3)=5 (2)+=4+8=(4+8)=12 例2計算 (1)3-9+3 (2)(+)+(-) 解:(1)3-9+3=12-3+6=(12-3+6)=15 (2)(+)+(-)=+- =4+2+2-=6+ 三、鞏固練習(xí) 教材P19 練習(xí)1、2 四、應(yīng)用拓展 例3已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值 分析:本題首先將已知等式進(jìn)行變形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=,y=3其次,根據(jù)二次根式的加減運算,先把各項化成最簡二次根式,再合并同類二次根式,最后代入求值(解題過程略) 五、歸納小結(jié) 本節(jié)課應(yīng)掌握:(1)不是最簡二次根式的,應(yīng)化成最簡二次根式;(2)相同的最簡二次根式進(jìn)行合并 六、布置作業(yè) 1教材P21 習(xí)題213 1、2、3、52選作課時作業(yè)設(shè)計 第一課時作業(yè)設(shè)計 一、選擇題 1以下二次根式:;中,與是同類二次根式的是( ) A和 B和 C和 D和 2下列各式:3+3=6;=1;+=2;=2,其中錯誤的有( ) A3個 B2個 C1個 D0個 二、填空題 1在、3、-2中,與是同類二次根式的有_ 2計算二次根式5-3-7+9的最后結(jié)果是_ 21.3 二次根式的加減(2)第二課時 教學(xué)內(nèi)容 利用二次根式化簡的數(shù)學(xué)思想解應(yīng)用題 教學(xué)目標(biāo) 知識與技能:運用二次根式、化簡解應(yīng)用題過程與方法:通過復(fù)習(xí),將二次根式化成被開方數(shù)相同的最簡二次根式,進(jìn)行合并后解應(yīng)用題.情感、態(tài)度、價值觀:通過學(xué)習(xí),利用二次根式化簡的數(shù)學(xué)思想,形成解決問題的能力. 重難點關(guān)鍵 講清如何解答應(yīng)用題既是本節(jié)課的重點,又是本節(jié)課的難點、關(guān)鍵點 教學(xué)過程 一、復(fù)習(xí)引入 上節(jié)課,我們已經(jīng)講了二次根式如何加減的問題,我們把它歸為兩個步驟:第一步,先將二次根式化成最簡二次根式;第二步,再將被開方數(shù)相同的二次根式進(jìn)行合并,下面我們講三道例題以做鞏固二、探索新知例1如圖所示的RtABC中,B=90,點P從點B開始沿BA邊以1厘米/秒的速度向點A移動;同時,點Q也從點B開始沿BC邊以2厘米/秒的速度向點C移動問:幾秒后PBQ的面積為35平方厘米?PQ的距離是多少厘米?(結(jié)果用最簡二次根式表示) 分析:設(shè)x秒后PBQ的面積為35平方厘米,那么PB=x,BQ=2x,根據(jù)三角形面積公式就可以求出x的值 解:設(shè)x 后PBQ的面積為35平方厘米 則有PB=x,BQ=2x 依題意,得:x2x=35 x2=35 x= 所以秒后PBQ的面積為35平方厘米 PQ=5 答:秒后PBQ的面積為35平方厘米,PQ的距離為5厘米 三、鞏固練習(xí) 教材P19 練習(xí)3 四、應(yīng)用拓展例3若最簡根式與根式是同類二次根式,求a、b的值分析:同類二次根式是指幾個二次根式化成最簡二次根式后,被開方數(shù)相同;事實上,根式不是最簡二次根式,因此把化簡成|b|,才由同類二次根式的定義得3a-b=2,2a-b+6=4a+3b (解略) 五、歸納小結(jié) 本節(jié)課應(yīng)掌握運用最簡二次根式的合并原理解決實際問題 六、布置作業(yè) 1教材P21 習(xí)題213 72選用課時作業(yè)設(shè)計 作業(yè)設(shè)計 一、選擇題 1已知直角三角形的兩條直角邊的長分別為5和5,那么斜邊的長應(yīng)為( )(結(jié)果用最簡二次根式) A5 B C2 D以上都不對 2小明想自己釘一個長與寬分別為30cm和20cm的長方形的木框,為了增加其穩(wěn)定性,他沿長方形的對角線又釘上了一根木條,木條的長應(yīng)為( )米(結(jié)果同最簡二次根式表示) A13 B C10 D5 二、填空題 3已知等腰直角三角形的直角邊的邊長為,那么這個等腰直角三角形的周長是_(結(jié)果用最簡二次根式) 三、綜合提高題 4若最簡二次根式與是同類二次根式,求m、n的值 5同學(xué)們,我們以前學(xué)過完全平方公式a22ab+b2=(ab)2,你一定熟練掌握了吧!現(xiàn)在,我們又學(xué)習(xí)了二次根式,那么所有的正數(shù)(包括0)都可以看作是一個數(shù)的平方,如3=()2,5=()2,你知道是誰的二次根式呢?下面我們觀察: (-1)2=()2-21+12=2-2+1=3-2 反之,3-2=2-2+1=(-1)2 3-2=(-1)2 =-1求:(1);(2);21.3 二次根式的加減(3)第三課時 教學(xué)內(nèi)容 含有二次根式的單項式與單項式相乘、相除;多項式與單項式相乘、相除;多項式與多項式相乘、相除;乘法公式的應(yīng)用 教學(xué)目標(biāo) 知識與技能:含有二次根式的式子進(jìn)行乘除運算和含有二次根式的多項式乘法公式的應(yīng)用 過程與方法: 復(fù)習(xí)整式運算知識并將該知識運用于含有二次根式的式子的乘除、乘方等運算中情感、態(tài)度、價值觀:通過本單元的學(xué)習(xí),培養(yǎng)學(xué)生利用規(guī)定準(zhǔn)確計算和化簡的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力 重難點關(guān)鍵 重點:二次根式的乘除、乘方等運算規(guī)律; 難點關(guān)鍵:由整式運算知識遷移到含二次根式的運算 教學(xué)過程 一、復(fù)習(xí)引入 學(xué)生活動:請同學(xué)們完成下列各題: 1計算 (1)(2x+y)zx (2)(2x2y+3xy2)xy 2計算 (1)(2x+3y)(2x-3y) (2)(2x+1)2+(2x-1)2 老師點評:這些內(nèi)容是對八年級上冊整式運算的再現(xiàn)它主要有(1)單項式單項式;(2)單項式多項式;(3)多項式單項式;(4)完全平方公式;(5)平方差公式的運用 二、探索新知 如果把上面的x、y、z改寫成二次根式呢?以上的運算規(guī)律是否仍成立呢?仍成立 整式運算中的x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當(dāng)然也可以代表二次根式,所以,整式中的運算規(guī)律也適用于二次根式 例1計算: (1)(+) (2)(4-3)2 分析:剛才已經(jīng)分析,二次根式仍然滿足整式的運算規(guī)律,所以直接可用整式的運算規(guī)律 解:(1)(+)=+ =+=3+2 解:(4-3)2=42-32 =2- 例2計算 (1)(+6)(3-) (2)(+)(-) 分析:剛才已經(jīng)分析,二次根式的多項式乘以多項式運算在乘法公式運算中仍然成立 解:(1)(+6)(3-) =3-()2+18-6 =13-3 (2)(+)(-)=()2-()2 =10-7=3 三、鞏固練習(xí) 課本P20練習(xí)1、2 四、歸納小結(jié) 本節(jié)課應(yīng)掌握二次根式的乘、除、乘方等運算 五、布置作業(yè) 1教材P21 習(xí)題213 1、8、9 2選用課時作業(yè)設(shè)計 作業(yè)設(shè)計 一、選擇題 1(-3+2)的值是( ) A-3 B3- C2- D- 2計算(+)(-)的值是( ) A2 B3 C4 D1 二、填空題 1(-+)2的計算結(jié)果(用最簡根式表示)是_2若x=-1,則x2+2x+1=_ 3已知a=3+2,b=3-2,則a2b-ab2=_ 課外知識 1同類二次根式:幾個二次根式化成最簡二次根式后,它們的被開方數(shù)相同,這些二次根式就稱為同類二次根式,就是本書中所講的被開方數(shù)相同的二次根式 練習(xí):下列各組二次根式中,是同類二次根式的是( )A與 B與C與 D與 2互為有理化因式:互為有理化因式是指兩個二次根式的乘積可以運用平方差公式(a+b)(a-b)=a2-b2,同時它們的積是有理數(shù),不含有二次根式:如x+1-與x+1+就是互為有理化因式;與也是互為有理化因式 練習(xí):+的有理化因式是_; x-的有理化因式是_ -的有理化因式是_ 3分母有理化是指把分母中的根號化去,通常在分子、分母上同乘以一個二次根式,達(dá)到化去分母中的根號的目的 練習(xí):把下列各式的分母有理化(1); (2); (3); (4)二次根式小結(jié)與復(fù)習(xí)(2課時)【主要內(nèi)容】本單元是在學(xué)習(xí)了平方根和算術(shù)平方根的意義的基礎(chǔ)上,引入一個符號“”主要內(nèi)容有:(1)二次根式的有關(guān)概念,如:二次根式定義、最簡二次根式、同類二次根式等;(2)二次根式的性質(zhì);(3)二次根式的運算,如:二次根式的乘除法、二次根式的加減法等【要點歸納】 1. 二次根式的定義:形如的式子叫二次根式,其中叫被開方數(shù),只有當(dāng)是一個非負(fù)數(shù)時,才有意義 2. 二次根式的性質(zhì): 3. 二次根式的運算二次根式的運算主要是研究二次根式的乘除和加減 (1)二次根式的加減:需要先把二次根式化簡,然后把被開方數(shù)相同的二次根式(即同類二次根式)的系數(shù)相加減,被開方數(shù)不變。注意:對于二次根式的加減,關(guān)鍵是合并同類二次根式,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 父親的病試題及答案
- 幼兒園圖形與顏色互相理解的題目及答案
- 施工現(xiàn)場安全標(biāo)準(zhǔn)實施的挑戰(zhàn)與機遇試題及答案
- 2025汽車工程知識測試題目及答案
- 2025金融科技面試題庫及答案
- 2025廣東公務(wù)員考試題及答案
- 新能源汽車與可持續(xù)交通政策的相互影響研究試題及答案
- 新能源汽車的技術(shù)標(biāo)準(zhǔn)與政策試題及答案
- 施工機構(gòu)設(shè)置原則試題及答案
- 特色項目的大學(xué)物理考試試題及答案
- 2024年陜西省普通高中學(xué)業(yè)水平合格性考試歷史試題(解析版)
- 拉美文化學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 集裝箱七點檢查表
- 天津民間藝術(shù)課件
- 智慧旅游電子票務(wù)管理系統(tǒng)整體設(shè)計方案
- 學(xué)習(xí)民法典 做遵紀(jì)守法小學(xué)生專題課件
- 亦莊開發(fā)區(qū)企業(yè)名錄
- 機械制圖-鍵連接
- 2022年 江蘇省宿遷市中考數(shù)學(xué)試卷及解析
- 建設(shè)工程項目質(zhì)量控制(課件).
- 商品混凝土公司員工培訓(xùn)方案(參考)
評論
0/150
提交評論