通過控制接觸的路徑和傳輸誤差來為螺旋錐輪設計齒輪機床設置外文文獻翻譯、中英文翻譯_第1頁
通過控制接觸的路徑和傳輸誤差來為螺旋錐輪設計齒輪機床設置外文文獻翻譯、中英文翻譯_第2頁
通過控制接觸的路徑和傳輸誤差來為螺旋錐輪設計齒輪機床設置外文文獻翻譯、中英文翻譯_第3頁
通過控制接觸的路徑和傳輸誤差來為螺旋錐輪設計齒輪機床設置外文文獻翻譯、中英文翻譯_第4頁
通過控制接觸的路徑和傳輸誤差來為螺旋錐輪設計齒輪機床設置外文文獻翻譯、中英文翻譯_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

華北科技學院畢業(yè)設計 第 1 頁 共 33 頁 附錄 外文文獻 Design of Pinion Machine Tool-settings foSpiral Bevel Gearsby Controlling Contact Path and Transmission Errors Cao Xuemeia,*,Fang Zongdea,Xu Haob,Su Jinzhana a:School of Mechatronics,Northwestern Polytechnic University,Xian 710072,China b:Zhongnan Transmission Machinery Works of Changsha Aviation Industries, Changsha 410200,China Received 16 September 2007;accepted 20 February 2008 Abstract: This paper proposes a new approach to design pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors.It is based on the satisfaction of contact condition of three given control points on the tooth surface.The three meshing points are controlled to be on a predesigned straight contact path that meets the pre-designed parabolic function of transmission errors.Designed separately,the magnitude of transmission errors and the orientation of the contact path are subjected to precise control.In addition,in order to meet the manufacturing requirements,we suggest to modify the values of blank offset,one of the pinion machine tool-settings,and redesign pinion machine tool-settings to ensure that the magnitude and the geometry of transmission errors should not be influenced apart from minor effects on the predesigned straight contact path.The proposed approach together with its ideas has been proven by a numerical example and the manufacturing practice of a pair of spiral bevel gears. Keywords:spiral bevel gear;contact path;transmission error;blank offset;tooth contact analysis 1 Introduction Spiral bevel gears are among the key components of aerospace power plants in general,helicopter gear drives in particular,which regard the meshing performance,endurance and reliability as critical safety factors.Therefore,designing spiral bevel gears has all the time 普通中型車床主軸箱與齒輪加工工藝及工裝設計 第 2 頁 共 33 頁 been drawing close attention of researchers in many companies and institutions.The requirements of reducing noise level and increasing endurance of spiral bevel gears have raise formidable challenge to designers too. The bases for designing low-noise spiral bevel gears with localized bearing contacts were presented in related Refs.In order to absorb larger errors in alignment and have better stability,the contact path should be designed to be a straight line.As transmission errors are mostly blamed for noise and vibration in gearing systems,the transmission errors of parabolic type are considered to be able to absorb linear discontinuous effects caused by misalignment referred to as the main source of noise. In some cases,the machine tool-settings designed by way of the existing local synthetic method are well beyond the appropriate applicable range of the machine. In this paper,a new integrated approach is proposed on the base of meeting the contact conditions inclusive of the predesigned parabolic function of transmission errors and the specifically oriented straight contact path through three given control points on the tooth surface.As a result,as early as in the designing stage,the operating performance could be controlled.In addition,the values of blank offset can be so modified as to be within the appropriate range of the machine without any influence on the magnitude of transmission errors apart from there being minor effects on the predesigned linear contact path. The proposed approach is based on the following assumptions: (1)The gear machine tool-settings are predetermined and can be adopted. (2)The main input parameters are 2 and m21 .Of them, 2 determines the orientation angle of the predesigned straight contact path,and m21 the sec- ond derivative of the transmission function,which determines the predesigned magnitude of the parabolic function of transmission error.In this paper,the values of 2 and m21 are given in advance,but,in practices,they can be optimized depending on the applied loads to obtain the favorable meshing performance through the loaded tooth contact analysis(LTCA). 2 Active Tooth Surface Design by Three Given Meshing Points After the three control meshing points have been determined on the gear surface by the predesigned straight contact path and the parabolic function of transmission errors,the pinion 華北科技學院畢業(yè)設計 第 3 頁 共 33 頁 machine tool-settings can be determined. 2.1 Determination of three contact points Fig.1 shows the three contact points on the gear tooth surface.2 is the pitch angle of the gear.The contact path is designed to be a straight line and 2 is the orientation of contact path. Fig.1 Three control meshing points and contact path. When the gear surface 2 rotates by 02, 12 and22,the pinion surface 1 contacts with it at meshing points M0,M1 and M2 with rotational angles 02, 12 and 22 respectively.Let the cycle of pinion meshing be 2/Z1,where Z1 is the tooth number of pinion,and then 11=/Z1+01 and 21=/Z1+01 can be determined. At the mean contact point M0,the instantaneous transmission ratio is equal to the gear ratio.Usually this point is chosen to be in the middle of the tooth surface,and its location can be adjusted according to design requirements.The rotation angles of the gear 02 and the pinion at this point 01,can be determined from the location and the meshing equation at M0. 2.2 Determination of transmission errors The transmission error function is represented by 2=(202) (101) Z1/ Z2 (1) Where i(i=1,2)is the rotation angle of the pinion(i=1)or the gear(i=2)in the process of meshing,and Zi the tooth number of the pinion(i=1)or the gear(i=2). The parabolic function of transmission error is represented by 普通中型車床主軸箱與齒輪加工工藝及工裝設計 第 4 頁 共 33 頁 2= m21(101)2 (2) where m21 is the derivative of the transmission ratio. 2 is determined as follows 2=Z1(101)/Z2+02+ m21(101)2 (3) The rotation angles of gear 12 and 22,at the meshing points M1 and M2,can be determined from Eq.(3). 2.3 Determination of orientation of contact path As the contact path is designed to be a straight line,the three meshing points M0,M1 and M2 are on it.The meshing equation between the gear surface 2 and the pinion surface 1 at the contact point M1 should observe n12=f(g,g, 12)=0 (4) where n and 12 are the unit normal and the relative velocity at the meshing point, g and g represent the surface coordinates of the gear tooth surface. Based on the location of the contact point M0 and the given orientation of contact path 2,the location of the contact point M1 can be determined.The location equation of contact point M1 is g(g,g, 12)=0 (5) By solving Eqs.(3)-(5),the position vector and unit normal of the point M1 at the gear surface 2 can be obtained.The position vector and the unit normal of the point M2 at the surface 2 can also be determined the same way. 2.4 Determination of 11 and 21 Fig.2 shows the coordinate systems for pinion generation.The coordinate systems Sm1,Sc and Sb are fixed on the machine.The pinion machine root angle 1 determines the orientation of Sb with respect to Sm1.XG1 is the machine center to back for generation of pinion;Em1 the blank offset and XB1 the sliding base.The cradle coordinate system Sp rotates about the Zm1-axis.The angle p is the current rotation angle of the cradle in the process of generation.The coordinate system Sf is connected rigid to the pinion head-cutter,which in the process of generation performs rotation with the cradle (transfer motion)and relative motion with respect to 華北科技學院畢業(yè)設計 第 5 頁 共 33 頁 Fig.2 Coordinate systems for pinion generation. the cradle about the Zf-axis.The movable coordinate system S1 is connected rigid to the generated pinion and rotates about the Xb-axis.The angle 1 is the current rotation angle of pinion in the process of generation. 11 and 21 are the rotation angles of pinion in the process of generation at points M1 and M2.By transforming the coordinate from S2 to Sc,the unit normal nc of contact points M1 and M2 in system Sc can be determined.Then by transforming the coordinate from Sf to Sm1,the unit normal nm1 of pinion-cutter-generating surface in Sm1 can be determined.Since the axis of Sm1 is parallel to the axis of Sc,the unit normal of contact point in the system Sc is equal to that in the system Sm1.The following equation holds true. nc (1) =nm1(p+ p) (6) from which 11 and 21 can be determined. 2.5 Determination of XG1,Em1, 1p and 2p The position vectors rcf of points M1 and M2 in the system Sc can be derived from their position vectors on pinion-cutter-generating surfaces by transforming the coordinate from Sf to Sc.The position vectors rc can be derived from the position vectors of contact points M1 and M2 on the surface 2 by transforming the coordinate from S2 to Sc.rcf and rc coincide with each other at the instantaneous point of contact M1(M2).The position vector equation is rcf=(XG1,Em1, p,sp)=rc (7) As for the points M1 and M2,the position vector equations,which are equivalent to six independent scalar equations with six unknowns,can be 普通中型車床主軸箱與齒輪加工工藝及工裝設計 第 6 頁 共 33 頁 used to determine the six unknowns:XG1,Em1, 1p, 2p,s1p and s2p.Here 1p and 2p are the rotation angles of cradle in the process of generating contact points M1 and M2. 2.6 Determination of rp,sr1,q1,XB1 and mp1 From the given angle 2 on the contact path 2,and the length of the major axis of the instantaneous contact ellipse,the principal curvatures and directions at mean contact point M0 for the pinion head-cutter can be determined with the local synthesis.Then the cutter point radius rp can be determined.Based on the position vectors for the point M0 in the systems Sc and Sm1,the machine tool-settings sr1,q1 and XB1 can be determined.Likewise,based on the unit normal for the point M0 in the system Sc and the equation of meshing between the pinion head-cutter and the pinion to be generated,the cutting ratio mp1 can be determined. 2.7 Determination of modified roll The modified roll means the cutting ratio not being constant in the process of generation.The rotation angle of the cradle p and the rotation angle of the pinion to be generated 1 are related by a polynomial function,usually,of the third order 1=pC(p)2D(p)3 (8) where C and D are modified roll coefficients.As the rotation angles 1p and 2p of the cradle and the rotation angles 11 and 21 of the pinion in the process of generating points M1 and M2 are all known.It is possible to use Eq.(8)to determine the modified roll coefficients. 3 Redesigning Pinion Machine Tool-settings Based on Blank Offset If the blank offset,calculated according to Section 2,is well beyond the appropriate applicable range of the machine,it should be modified,and the pinion machine tool-settings be redesigned on the result acquired in Section 2. 3.1 Determination of XG1,rp and mp1 Principal directions(ef, eh)and principal curvatures(kf,kh)of a pinion tooth surface 1 at the mean contact point M0 can be determined by local synthesis between the gear tooth surface 2 and the pinion tooth surface 1.Then using the meshing equation of pinion and head-cutter on the mean contact point M0,the machine center to back XG1 can be determined. Based on the Rodrigues formula and the condition of continuous tangency of head-cutter surface p and pinion tooth surface 1 along the line,the following two equations can be 華北科技學院畢業(yè)設計 第 7 頁 共 33 頁 obtained 212=1122 (9) 1123=1213 (10) From Eq.(9),the principal curvatures ks of point M0 on the cone surface of the head-cutter can be determined while the other principal curvature being zero.Then the cutter point radius rp can be determined.From Eq.(10),the ratio of pinion roll mp1 can be determined. 3.2 Determination of modified roll coefficients r(1)h(p,p,1)= r(2)h(g,g,1) (11) n(1)h(p,p,1)= n(2)h(g,g,1) (12) Eqs.(11)-(12)describe the continuous tangency of the pinion and the gear tooth surfaces 1 and 2, the subscripts 1 and 2 denote the pinion tooth surface and the gear tooth surface,respectively.Eq.(11) indicates that the position vectors of the point on 1 and the point on 2 coincide at the instantaneous contact point in the fixed coordinate system Sh,and Eq.(12)that the surface unit normals do at the contact point.Eqs.(11)-(12)are equivalent to five independent scaler equations with five unknowns.The parameters p and p represent the surface coordinates of 1,and g and g of 2.The parameter 1 denotes the rotation angle of pinion in the process of generation at the contact point. The rotation angles of gear 12 and 22 at the contact points M1 and M2 can be determined byEq.(3),and are chosen to be the input in solving Eqs.(11)-(12).Then 11, 21and 1p, 2p can be determined. By Eq.(8),the modified roll coefficients C and D can be determined. The solutions of Eqs.(11)-(12)are not unique.Rather,the different solution determines the different contact point under the same rotation angle of gear 2.In order to keep the contact point as close to the predesigned contact point as possible,the corresponding parameters of the point M1(M2)from Section 2 should be chosen as the initial values of the five unknowns to solve Eq.(11)and Eq.(12). An example is taken to show the influences of modification of blank offset on the contact path,of which the design parameters are listed in Table 1.Fig.3(a)shows the contact pattern designed according to Section 2.The contact path is a straight line and the blank offset calculated is27.604 mm.Then by assuming the blank offset to be 0 mm,the redesign 普通中型車床主軸箱與齒輪加工工藝及工裝設計 第 8 頁 共 33 頁 according to Section 3 is accomplished on the base of the first design.Fig.3(b)shows the contact pattern. Table 1 Blank data 華北科技學院畢業(yè)設計 第 9 頁 共 33 頁 Fig.3 Influences of blank offset on contact path. The redesign aims at making the values of blank offset within the appropriate applicable range of the machine.Since the rotation angles of pinion at control meshing points are known,and the corresponding rotation angles of gear can be determined from Eq.(3),the modification of blank offset does not change the magnitude of transmission errors. The nonlinear Eqs.(11)and(12)have multiple solutions.The parameters of control meshing points M1 and M2 calculated in active tooth surface design(see Sections 2.3 and 2.5)are used to be the initial values to solve equations,so the control meshing points redesigned can be as close to the corresponding points M1 and M2 as possible.Although the redesigned contact path has a very small curvature,it still comes extremely close to the straightline shape resulting from the function-oriented active tooth surface design. In order to absorb larger errors of misalignment, the contact path should be designed to be a straigh line.On the other hand,the values of blank offse depend on the appropriate applicable range of the machine.Therefore,the modification of blank offse should be within the appropriate applicable range of the machine and made to reduce the curvature of the contact path as much as possible. 4 Example of Designing Spiral Bevel Gear An example of designing a spiral bevel gear has been accomplished to illustrate the proposed approach.The design parameters are listed in Table 1. 普通中型車床主軸箱與齒輪加工工藝及工裝設計 第 10 頁 共 33 頁 The concave side of the pinion tooth surface and the convex side of the gear tooth surface are considered the driving and driven surfaces,respectively.On the working flank,the geometry of the transmission error is designed to be of a parabolic function;the magnitude of the transmission error is 8.25,and the predesigned contact path orientation is 22o from the root cone.On the non-working flank,the magnitude of the transmission error is designed to be 11.25and the predesigned contact path orientation 14o from the root cone.Blank offset is assumed to be 0 mm. Table 2 and Table 3 show the machine tool-settings of the gear and the pinion. Table 2 Gear machine tool-settings Table 3 Pinion machine tool-settings 華北科技學院畢業(yè)設計 第 11 頁 共 33 頁 The results from tooth contact analysis(TCA) are shown in Fig.4,which include the adjusted contact pattern and the obtained function of transmission errors. 普通中型車床主軸箱與齒輪加工工藝及工裝設計 第 12 頁 共 33 頁 Fig.4 Contact patterns and transmission errors. 5 Experimental The spiral bevel gear pair designed according to Section 4 is processed by the Phoenix 800PG grinding machine.The actual tooth surfaces are measured on the Mahrs measurement device.The theoretically calculated tooth surface is used as a baseline for comparison.Fig.5 compares the tooth 華北科技學院畢業(yè)設計 第 13 頁 共 33 頁 Fig.5 Deviations of actual tooth surface from theoretical tooth surfaces for gear and pinion. topographies,obtained from the mathematical model and the data measured on the real manufactured gears.For the gear,the maximum surface deviations are 0.015 mm on the convex side and 0.010 mm on the concave side,and for the pinion, the maximum surface deviations are 0.004 mm on the convex side and 0.004 mm on the concave side.Moreover,the maximum deviations are all located far away from the contact area while the deviations on the contact area are near zero.Fig.6 and Fig.7 show the real contact patterns on the working flank and the non-working flank,which are quite consistent with the theoretically calculated results. 普通中型車床主軸箱與齒輪加工工藝及工裝設計 第 14 頁 共 33 頁 Fig.6 Contact patterns on working flank 華北科技學院畢業(yè)設計 第 15 頁 共 33 頁 Fig.7 Contact patterns on non-working flank. 6 Conclusions From the computer calculation,simulation and experiment,some conclusions can be made as follows: (1)The proposed approach to design pinion surfaces is based on controlling three meshing points.The geometry of transmission errors is designed to be a parabolic function and the magnitude can be calculated by derivation of transmission ratio m21,an input variable.The contact path is designed to be a straight line and its orientation can be adjusted.The magnitude of transmission errors and the contact path are designed separately.This provides a better ground for the further design of the transmission errors under loads. (2)The values of blank offset can be so modified as to have no influences on the 普通中型車床主軸箱與齒輪加工工藝及工裝設計 第 16 頁 共 33 頁 magnitude of transmission error apart from there being few of effects on the predesigned straight contact path. (3)On the Phoenix grinding machine,a spiral bevel gear pair is produced,whose meshing mark verifies the computer-calculated and simulation results. References 1Litvin F L.Local synthesis and tooth analysis of face-milled of spiral bevel gears.NASA-CR-4342,1990. 2Litvin F L.Gear geometry and applied theory.Englewood Cliffs:Prentice Hall,1994. 3Lewicki D G,Handschuh R F,Henry Z S.Low-noise,high strength spiral bevel gears for helicopter transmission.Journal of Propulsion and Power 1994;10(3):356-361. 4Zhang Y.Computering analysis of meshing and contact of gear real tooth surfaces.ASME Journal of Mechanical Design 1994;116(6):677-671. 5Zhang Y,Litvin F L,Handschuh R F.Computerized design of low-noise face-milled spiral bevel gears.Mechanism and Machine Theory 1995;30(8):1171-1178. 6Lin C Y,Tsay C B,Fong Z H.Mathematical model of spiral bevel and hypoid gears manufactured by the modified roll method. Mechanism and Machine Theory 1997;32(1):121-136. 7Litvin F L,Wang A G,Handschuh R F.Computerized generation and simulation of meshing and contact of spiral bevel gears with improved geometry.Journal Computer Methods in Applied Me-chanics and Engineering 1998;158(1):35-64. 8Lin C Y,Tsay C B,Fong Z H.Computer-aided manufacturing of spiral bevel and hypoid 華北科技學院畢業(yè)設計 第 17 頁 共 33 頁 gears by applying optimization tech-niques.Journal of Materials Processing Technology 2001;114(1): 22-35. 9Simon V.Optimal machine tool settings for hypoid gears improving load distribution.ASME Journal of Mechanical Design 2001;123(12):557-582. 10Fuentes A,Litvin F L,Woods B R,et al.Design and stress analysis of low-noise adjusted bearing contact spiral bevel gears.ASME Journal of Mechanical Design 2002;124(4):524-532. 11Litvin F L.Computerized design,simulation of meshing,and contact and stress analysis of face-milled formate generated spiral bevel gears.Mechanism and Machine Theory 2002;37(3): 441-459. 12Argyris J.Computerized integrated approach for design and stress of spiral bevel gears.Comput Methods Appl Mech Engrg 2002;191(8):1057-1095. 13Fang Z D.Tooth contact analysis of spiral bevel gears based on the design of transmission error.Acta Aeronautica et Astronautica Sinica 2002;23(3):226-230.in Chinese 14Cao X M,Fang Z D,Zhang J L.Function-oriented active tooth surface design of spiral bevel gears.Chinese Journal of Mechanical Engineering 2007;43(8):155-158.in Chinese 15Cao X M,Fang Z D,Zhang J L.Analysis and design of the pinion machine settings for spiral bevel gears.China Mechanical Engineering 2007;18(13):1584-1587.in Chinese 16Wang P Y,Fong Z H.Fourth-order kinematic synthesis for face milling spiral bevel gears with modified radial motion(MRM) correction.ASME Journal of Mechanical Design 2006;128(2): 457-467. 17Medvedev V I,Volkov A E.Synthesis of spiral bevel gear transmissions with a small shaft angle.Journal of Mechanical Design 2007;129(9):949-959. 18Fang Z D,Cao X M,Zhang J L.Measuring date processing of aviation spiral bevel gears by using coordinate measurement.Acta Aeronautica et Astronautica Sinica 2007;28(2):456-459.in Chinese Biographies: Cao Xuemei Born in 1970,her main research interests include design,manufacture and measurement of spiral bevel and hypoid gears. E-mail:2004 普通中型車床主軸箱與齒輪加工工藝及工裝設計 第 18 頁 共 33 頁 Fang Zongde Born in 1948,Ph.D.,professor.His main research interests include dynamics of structure,micro-air- craft design and CAE. E-mail: 華北科技學院畢業(yè)設計 第 19 頁 共 33 頁 譯文: 通過控制接觸的路徑和傳輸誤差來為螺旋錐 輪設計齒輪機床設置 曹雪梅 a 方宗德 a 徐昊 b 蘇金展 a a:西北理工大學 機電一體化 中國 西安 郵編 710072 b:中南航空工業(yè)學院 中國 長沙 郵編 410200 2007 年 9月 16 日收到 2008 年 2 月審核通過 摘要 :本文提出了一種通過控制接觸的路徑和傳輸 誤差來為 螺旋錐齒輪 設計齒輪機床設置 的 新方法 。此方法是基于齒面上三個給定的控制點接觸情況的符合度。這 三個嚙合點是要控制在一個預先直接聯(lián)系的 路徑內(nèi) , 且此路徑 符合預先的拋物線功能傳輸 誤差 設計 。 另外,設計 、 規(guī)模傳輸 誤差 和方向 與 聯(lián)絡道路受到精確的 控制。 此外,為了滿足生產(chǎn)要求,我們建議修改空白補償 的價值、其中一種 的插齒機床設置,并重新設計齒輪機床設置,以確保規(guī)模和幾何形狀,傳輸 誤差 不 會 受到影響,除了對預 先直接 路徑 的影響。對于 一對螺旋錐齒輪 來說 ,此 方法連同其理念已被一個數(shù)值 模型所 證明 ,并且是一個制造業(yè)的實踐 。 關鍵詞 : 螺旋錐齒輪 ; 聯(lián)絡 路 徑;傳輸誤差;空白補償; 齒面接觸分析 1 前言 一般說來, 螺旋錐齒輪是航天發(fā)電廠其中的關鍵組成部 分 ,尤其是直升機齒輪傳動 。 嚙合性能,耐力和可靠性 是 這方面重要的安全 參數(shù)。因而 ,許多公司和機構 的 研究人員 一直都在 密切關注螺旋錐齒輪 的 設計。 同時,也在設計 減少噪音水平和增加耐力的螺旋錐齒輪 方面給設計師帶來了 艱巨的挑戰(zhàn)。 低噪聲局部軸承接觸螺旋錐齒輪 的基礎設計 , 參見相關參考文獻上。 為了 吸收較大的 誤差 路線和有較好的穩(wěn)定性,聯(lián)絡 路徑 的設計應是一 條 直 線。因為 傳輸 誤差 ,大多歸咎于噪音 與 齒輪系統(tǒng) 振動 ,拋物型 的 傳輸 誤差 被認 為能夠吸收線性間斷的影響所造成的偏心 ,而成 為主要噪音來源。 在某些情況下, 運用 現(xiàn)有的合成方法 來 機床設置設計的, 將 遠遠 超過機器的 適當?shù)倪m用范圍 。 普通中型車床主軸箱與齒輪加工工藝及工裝設計 第 20 頁 共 33 頁 在 本文中 ,在滿足接觸條件包容性的預拋物功能的傳輸 誤差 和通過 在齒面上的 三個給定控制點的 直 接 接觸路徑 的 基礎上 ,提 出了一種新的綜合 方 法 。 因此,早在設計階段,經(jīng)營業(yè)績可 以得到預先控制。 此外,空白抵銷 的價值的 修改 可以 在 機器的 適當范圍內(nèi) ,從而 對規(guī)模傳輸錯誤沒有任何影響,除了對預線性聯(lián)系的路徑有輕微的 影響。 此 方法是基于以下的假設 : ( 1) 齒輪機床設置 可以 預 先設定且能被采納。 ( 2)主要的輸入?yún)?shù)是 2 和 m21。 其中, 2決定了 預 先直接 接觸 路徑 的 方位角 ,也決定了 傳輸功能 的 二階導數(shù) m21,而 m21決定了傳輸 誤差 預先設計的規(guī)模拋物線的功能 。在本文中,參數(shù) 2 和 m21事先給定的。但在實際中, 通過加載齒面接觸分析 ,它們 可以依賴于應用負載以取得良好的嚙合性能, 從而得到優(yōu)化。 2 通過三個給定嚙合點進行活動齒面設計 由預 先直接 接觸路徑和拋物功能的傳輸 誤差確定 三個 齒面上的 控制嚙合點 后 ,齒輪機床設置才能 得到 確定 。 2.1 三個接觸點的確定 圖 1 展示出了齒面上的三個接觸點。 2是齒輪的俯仰角。接觸路徑被設計成一條直徑,同時, 2是接觸路徑的方位。 圖 1 三個控制嚙合點與接觸路徑 當齒輪表面 2由 02, 12 和 22決定時 ,齒輪表面 1將分別以角度 02, 12 和 22在點 M0,M1 和 M2 與其接觸。如果齒輪嚙合的周長為 2 /Z1, Z1 是齒輪的齒數(shù),那么華北科技學院畢業(yè)設計 第 21 頁 共 33 頁 11= /Z1+ 01 和 21= /Z1+ 01得到確定。 對于接觸點 M0, 瞬時傳動比等于齒輪比率 。通常這個點被選在齒輪表面的中央,而且它的位置可以根據(jù)設計要求進行調(diào)整。 齒輪 02和在 01這一點上 的 插齒 的旋轉 角度,可以通過 M0點的 位置 與 嚙合方程 來確定。 2.2 確定傳輸誤差 傳輸誤差函數(shù)由下式表示: 2=( 2 02) ( 1 01) Z1/ Z2 (1) i(i=1,2)是嚙合過程中插齒 (i=1)或者齒輪 (i=2)的方位角, Zi是插齒 (i=1)或者齒輪 (i=2)的齒輪數(shù)目。 傳輸誤差的拋物線函數(shù)由下式表示: 2= m21( 1 01)2 (2) m21是傳動比率的導數(shù)。 2 又由下式表示: 2=Z1( 1 01)/Z2+ 02+ m21( 1 01)2 (3) 在點 M1和 M2的齒輪 12 和 22的方位角可以由公式( 3)得出。 2.3 接觸路徑方位的確定 因為接觸路徑要被設計成一條直線 ,同時三個嚙合點 M0,M1和 M2在其之上,所以齒輪表面 2與插齒表面 1在點 M1的嚙合方程必須滿足: n 12=f( g,g, 12)=0 (4) n and 12是在嚙合點上的普通單元與相當速度, g and g表示齒輪表面的 表面坐標。 在接觸點 M0的位置與接觸路徑 2給定的方位基礎上 ,接觸點 M1的位置才能得到確定。接觸點 M1的位置方程是: g( g,g, 12)=0 (5) 通過解出方程 (3)-(5), 在齒輪表面 2上的 接觸點 M1的位置矢量和普通單元可以得出。同理可以得出 齒輪表面 2上的 接觸點 M2的位置矢量和普通單元。 2.4 確定 11 和 21 圖 2 表示出了齒輪的坐標系。坐標系 Sm1,Sc 和 Sb是固定在機床上的。插齒機器的普通中型車床主軸箱與齒輪加工工藝及工裝設計 第 22 頁 共 33 頁 基準角度 1和 Sm1共同決定了 Sb的方位。 XG1是機床的中心,它支持著齒輪的運轉、空白補償 Em1和滑動地點 XB1。基準坐標系 Sp圍繞著 Zm1軸旋轉。角度 p是基準坐標系旋轉過程中的即時方位角。坐標系 Sf牢固地連接在齒輪刀頭上 ,而它是在執(zhí)行基準坐標系 (運動轉變 )的旋轉過程和圍繞著 Zf軸的相對轉動中的??梢苿幼鴺讼?S1牢固地連接在運動的插齒上并圍繞著 Xb旋轉。角度 1是插齒旋轉過程中的即時方位角。 11和 21分別是插齒運動到點 M1和 M2處的方位角。通過將坐標從 S2改變到 Sc,坐標系 Sc里接觸點 M1和 M2的普通單元 nc就能得到確定。然后通過將坐 標從 Sf改變到 Sm1,坐標系 Sm1里齒輪運轉機表面上的普通單元 nm1就能得到確定。由于 Sm1軸和 Sc軸是平行的,那么兩個坐標系中接觸點上的普通單元是等同的,有下面的方程成立: nc (1) =nm1( p+ p) (6) 從中可以得出 11和 21的值。 圖 2 插齒的坐標系 2.5 確定 XG1,Em1, 1p 和 2p 坐標系 Sc 中接觸點 M1和 M2的方位向量 rcf,通過將坐標從 Sf改變到 Sc,可以在齒輪運轉機表面上得到。方位向量 rc,通過將坐標從 S2改 變到 Sc,可以從齒輪表面 2上接觸點 M1和 M2上得出。 rcf和 rc在瞬時接觸點 M1( M2)是相互關聯(lián)的。其方位向量方程是: rcf=(XG1,Em1, p,sp)=rc (7) 對于點 M1和 M2來說,方位向量方程 相當于 6 個獨立的標量方程與 6 個 未知數(shù),可用來確定 6個 未知數(shù) : XG1,Em1, 1p, 2p,s1p和 s2p。這里的 1p和 2p是基準坐標系旋轉過程中華北科技學院畢業(yè)設計 第 23 頁 共 33 頁 接觸點 M1和 M2的方位角。 2.6 確定 rp,sr1,q1,XB1和 mp1 從接觸路徑 2 上給定的角度 2,和 主要軸線的瞬時接觸橢圓形 的長度以及齒輪頭到的主要接觸點 M0主曲率和方向 可以由局部的合成得到。之后刀頭半徑 rp就可以得出?;谧鴺讼?Sc和 Sm1中接觸點 M0的方位矢量,機床設置值 sr1,q1 和 XB1即可得出。同理,基于坐標系 Sc中接觸點 M0上的普通單元和刀頭齒輪與旋轉齒輪間的嚙合方程,可以得出切割比率 mp1 2.7 確定可調(diào)節(jié) 軋輥 可調(diào)節(jié) 軋輥 指的是在齒輪旋轉過程中切割比率并不是恒量。起始 p的方位角度和啟動齒輪的 1的方位角度,通常來說與一個三次多項式函數(shù)有關。 1=pC(p)2D(p)3 (8) 其中 C 和 D 是 可調(diào)節(jié) 軋輥 系數(shù)。由于起始坐標系的方位角 1p與 2p和在旋轉過程中的接觸點 M1與 M2的方位角 11與 21都是已知的,所以可以運用公式( 8)來確定可調(diào)節(jié)軋輥 系數(shù)。 3 基于空白補償?shù)凝X輪機床設置的再設計 如果空白補償根據(jù)章節(jié) 2來計算,大大超過了機床的合適的適用范圍,那么就應該對它進行調(diào)整。同時齒輪機床設置也應該根據(jù)從章節(jié) 2 得到的結果進行再設計。 3.1 確定 XG1,rp和 mp1 通過對齒輪表面 2 與插齒表面 1 間的局部合成,在主要 接觸點 M0 上齒輪表面 1的主方向 (ef, eh) 與主曲率 (kf,kh)即可以得出。然后在主要接觸點 M0上運用齒輪與刀頭間的嚙合方程,支撐 XG1的機床中心可以得到確定。 基于 Rodrigues 公式和刀頭沿直線連續(xù)切削齒輪表面 p與齒輪齒面 1的情況,可以得出以下兩個公式: 212= 11 22 (9) 11 23= 12 13 (10) 根據(jù)公式( 9),當另一個主曲率為零時,可以得出刀頭的錐面上的接觸點 M0 的主曲率 ks。之后切削點的半徑 rp 也可以得出。根據(jù)公式( 10),可以得出 插齒輥 mp1的比例。 普通中型車床主軸箱與齒輪加工工藝及工裝設計 第 24 頁 共 33 頁 3.2 確定可調(diào)節(jié) 軋輥系數(shù) r(1)h( p,p,1)= r(2)h( g,g,1) (11) n(1)h( p,p,1)= n(2)h( g,g,1) (12) 公式 ( 11) -( 12) 描述了齒輪的連續(xù)切削 ,和插齒齒面 1 與齒輪齒面 2,下標 1與 2 分別代表表示插齒齒面 與齒輪齒面。公式( 11)表明表面 1與表面 2上的點的方位矢量在 固定坐標系 Sh的 瞬時接觸點 上相合。同時根據(jù)公式( 12),齒面上的普通單元在接觸點上。公式( 11) -( 12)相當于擁有 5 個未知數(shù)的 5 個獨立的標量方程。參數(shù) p和 p表示表面 1上的坐標 ,而 g和 g則表示表面 2上的坐標。參數(shù) 1表示插齒在轉動過程中在接觸點上的旋轉角度。 通過方程( 3),齒輪 12和 22在接觸點 M1和 M2的旋轉角度即可以得出,然后被選出,作為輸入量來解方程( 11) -( 12)。然后可以得出 11, 21和 1p, 2p。 通 過方程( 8),可以得出 可調(diào)節(jié) 軋輥 系數(shù) C和 D。 方程( 11) -( 12)的解并不是惟一的。當齒輪 2的旋轉角度一定時,不同的解將得出不同的接觸點。為了使這個得出的接觸點與預設計時的接觸點盡可能地接近,來自章節(jié) 2的相應的參數(shù) M1(M2)將被選出,作為方程( 11)和( 12) 5個未知數(shù)的初始值來解這兩個方程。 有一個例子可以看出改變接觸路徑上的空白補償所帶來的影響,其設計參數(shù)見表 1。圖 3( a)表示出了根據(jù)章節(jié)所得出的接觸方式設計。其中接觸路徑是一條直線,同時計算得出空白補償為 27.604 mm。然后假設空白補償為 0mm,那么在第一次設計的基礎上,可以根據(jù)章節(jié) 3完成再設計。 表 1 空白補償數(shù)據(jù) 華北科技學院畢業(yè)設計 第 25 頁 共 33 頁 圖 3 在接觸路徑上空白補償?shù)挠绊?再設計的目的是在機床合適的適用范圍內(nèi)是空白補償產(chǎn)生價值。因為在一個可控制嚙合點上的插齒的旋轉角度是已知的,同時可以從方程( 3)中得出齒輪的旋轉角度,普通中型車床主軸箱與齒輪加工工藝及工裝設計 第 26 頁 共 33 頁 那么空白補償?shù)淖兓粫淖儌鬏斦`差的大小。方程( 11) -( 12)有多組解。在運動齒輪齒面(參見章節(jié) 2.3 和 2.5)中計算得出的可控制嚙合點 M1和 M2的參數(shù),被作為初始值來解方程,那么再設計的可控制嚙合點可以做到盡可能地接近相應的接觸點 M1 和M2。盡管再設計的路徑會有一個很小的曲率,但是它還是能十分接近面向功能的運動齒輪齒面的設計出的直線路徑。 為了能抵消偏心所造成的誤差,接觸路徑必須設計成一條直線。另一方面,空白補償?shù)淖饔萌Q于機床合適的適用范圍的大小。因而,空白補償?shù)淖兓瘧撛跈C床合適的適用范圍之內(nèi),同時它的變化要盡可能地減小接觸路徑的曲率。 4 螺旋錐齒輪的設計舉例 現(xiàn)在已經(jīng)完成了一個 螺旋錐齒輪 設計的例子,以此來展現(xiàn)本文中的再設計方法。其設計參數(shù)見表 1。 凹側的插齒齒面 與 凸側的齒輪齒面 分別是主動切削表面與被切削表面。在工作側翼,傳輸誤差 的幾何形狀被設計成包含一個拋物線函數(shù);傳輸誤差的大小為 8.25,從齒輪根錐到預設計的接觸路徑的方位角為 22o。在非工作側翼,將傳輸誤差的大小設計為 11.25,從齒輪根錐到預設計的接觸路徑的方位角為 14o??瞻籽a償假設為 0mm。 表 2和表 3表示了齒輪與插齒的機床設置。 表 2 齒輪的機床設置 表 3 插齒的機床設置 華北科技學院畢業(yè)設計 第 27 頁 共 33 頁 圖 4 中表示出了齒面接觸分析 (TCA)的結果,它包括調(diào)整了的接觸方式和來自傳輸誤差的功能。 普通中型車床主軸箱與齒輪加工工藝及工裝設計 第 28 頁 共 33 頁 圖 4 接觸方式與傳輸誤差 5 實驗 根據(jù)章節(jié) 4得出的 螺旋錐齒輪對設計 將在鳳凰 800PG 磨床上 進行實驗。在 馬爾的測量裝置 對實際齒面進行測量。 該理論計算的齒面是用來作為 比較基準的。圖 5比較了齒輪的 拓樸圖 ,此圖由數(shù)學模型和實際制造的齒輪的測量數(shù)據(jù)所得來。齒輪的凸面最高表面偏差為 0.015mm,凹面最高最高表面偏差為 0.010mm。插齒的 凸面最高表面偏差為0.004mm,凹面最高最高表面偏差也為 0.004mm。最高的偏差都是遠離接觸面的區(qū)域,而接觸面的偏差幾乎為零。 華北科技學院畢業(yè)設計 第 29 頁 共 33 頁 圖 5 齒輪與插齒實際齒面與理論齒面的偏差 圖 6 與圖 7 表示出了齒輪工作側翼和非工作側翼的實際接觸路徑,這與理論計算結果相當一致。 普通中型車床主軸箱與齒輪加工工藝及工裝設計 第 30 頁 共 33 頁 圖 6 工作側翼的接觸路徑 華北科技學院畢業(yè)設計 第 31 頁 共 33 頁 圖 7 非工作側翼的接觸路徑 6 結論 經(jīng)過計算機的計算、模擬與實驗,可以得出如下一些結論: ( 1) 本文中 的設計插齒表面 的 方法是基于控制三個嚙合點 的。 傳輸誤差的幾何形狀被設計成包含一個拋物線函數(shù),其大小可由傳動比率(一個輸入變量)的偏差所計算出。接觸路徑被設計成一條直線且其方向可以調(diào)整。傳輸誤差大小與接觸路徑是分開進行設計的,這為在負載下對傳輸誤差做進一步設計打下了一個更好的基礎。 ( 2)空白補償具有很大的可變性,以致于除了對預設計的直線接觸路徑有微弱影響外,其對于傳輸誤差的大小沒 有影響。 ( 3)在鳳凰磨床上制造出一對 螺旋錐齒輪 ,而齒輪的嚙合路徑驗證了計算機計算與模擬的結果。 普通中型車床主軸箱

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論