下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2015考研高數(shù):極限計(jì)算常用7種突圍方法(一)四則運(yùn)算法則四則運(yùn)算法則在極限中最直接的應(yīng)用就是分解,即將復(fù)雜的函數(shù)分解為若干個(gè)相對(duì)簡(jiǎn)單的函數(shù)和、積和商,各自求出極限即可得到要求的極限。但是在分解的時(shí)候要注意:(1)分解的各部分各自的極限都要存在;(2)滿足相應(yīng)四則運(yùn)算法則,(分母不能為0)。四則運(yùn)算的另外一個(gè)應(yīng)用就是“抓大頭”。如果極限式中有幾項(xiàng)均是無(wú)窮大,就從無(wú)窮大中選取起主要作用的那一項(xiàng),選取的標(biāo)準(zhǔn)是選趨近于無(wú)窮最快的那一項(xiàng),對(duì)數(shù)函數(shù)趨于無(wú)窮的速度遠(yuǎn)遠(yuǎn)小于冪函數(shù),冪函數(shù)趨于無(wú)窮的速度遠(yuǎn)遠(yuǎn)小于指數(shù)函數(shù)。(二)洛必達(dá)法則(結(jié)合等價(jià)無(wú)窮小替換、變限積分求導(dǎo))洛必達(dá)法則解決的是“零比零”或“無(wú)窮比無(wú)窮”型的未定式的形式,所以只要是這兩種形式的未定式都可以考慮用洛必達(dá)法則。當(dāng)然,在用洛必達(dá)的時(shí)候需要注意(1)它的三個(gè)條件都要滿足,尤其要注意第二三個(gè)條件,當(dāng)三個(gè)條件都滿足的時(shí)候才能用洛必達(dá)法則;(2)用洛必達(dá)法則之前一定要先化簡(jiǎn),把要求極限的式子化成“干凈”的式子,否則會(huì)遇到越求導(dǎo)越麻煩的情況,有的甚至求不出來(lái),所以一定要先化簡(jiǎn)?;?jiǎn)常用的方法就是等價(jià)無(wú)窮小替換,有時(shí)也會(huì)用到四則運(yùn)算??忌欢ㄒ煊洺S玫牡葍r(jià)無(wú)窮小,以及替換原則(乘除因子可以替換,加減不要替換)??佳兄?,除了也常常會(huì)把變限積分和洛必達(dá)相結(jié)合進(jìn)行考查,這種類型的題目,首先要考慮洛必達(dá),但是我們也要掌握變限積分求導(dǎo)。另外,考試中有時(shí)候不直接考查“零比零”或“無(wú)窮比無(wú)窮”型,會(huì)出“零乘以無(wú)窮”,“無(wú)窮減無(wú)窮”這種形式,我們用的方法就是把他們變成“零比零”或“無(wú)窮比無(wú)窮”型。(三)利用泰勒公式求極限利用泰勒公式求極限,也是考研中常見的方法。泰勒公式可以將常用的等價(jià)無(wú)窮小進(jìn)行推廣,如,等。也可以用來(lái)求解未知極限式中的未知參數(shù),和解決抽象函數(shù)的極限。尤其是未知極限式中的未知參數(shù),比起洛必達(dá)更適合用泰勒公式去做。(四)冪指函數(shù)的極限計(jì)算方法冪指函數(shù)指的是,底數(shù)和指數(shù)都是函數(shù)的函數(shù)。對(duì)于冪指函數(shù)考研中經(jīng)??嫉念}型是未定式的形式,如:,,。統(tǒng)一的處理方式是做恒等變形,從而只要能計(jì)算出極就可以了。當(dāng)然對(duì)于的形式除了用剛才那種方法,也可以用重要極限去做。對(duì)于用兩種方法得出的結(jié)果都是,其中
。把這個(gè)當(dāng)結(jié)論記住,遇到的形式直接用就可以了。
(五)夾逼定理夾逼定理是極限這部分兩個(gè)收斂準(zhǔn)則之一,數(shù)一數(shù)二要求掌握并會(huì)用它求極限。數(shù)三要求了解極限存在的收斂準(zhǔn)則,經(jīng)常以求n項(xiàng)和的極限這種形式出現(xiàn)或數(shù)列極限的形式出現(xiàn)。使用夾逼定理的核心在于放縮,即將要計(jì)算極限的函數(shù)或數(shù)列放大和縮小之后分別求極限,如果這兩者的極限都等于同一個(gè)數(shù),那么原先的函數(shù)或數(shù)列的極限也就等于這個(gè)數(shù)。這里在放縮的時(shí)候一般要遵循兩個(gè)基本原則:一是要便于計(jì)算,二是要適度(也即放縮之后的極限必須一致)。夾逼定理主要用來(lái)求數(shù)列極限,對(duì)數(shù)一數(shù)二的要求高一些。(六)單調(diào)有界定理單調(diào)有界定理是極限存在的另一個(gè)收斂準(zhǔn)則??佳兄械念}型主要是證明一個(gè)數(shù)列極限存在,并求其極限常見于數(shù)一二,尤其是數(shù)二,11、12、13年連續(xù)三年考單調(diào)有界定理。這種類型題目,主要就是證明數(shù)列單調(diào)有界(單調(diào)遞增有上界,單調(diào)遞減有下界)即可。(七)定積分定義考研中求n項(xiàng)和的極限這類題型用夾逼定理做不出來(lái),這時(shí)候需要用定積
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024城市二手房買賣合同(32篇)
- 滬教版九年級(jí)化學(xué)上冊(cè)(上海版)全套講義
- 農(nóng)業(yè)金融服務(wù)提升產(chǎn)量潛力
- 高一化學(xué)教案:專題第三單元第二課時(shí)有機(jī)高分子的合成
- 2024高中化學(xué)第二章烴和鹵代烴2-1苯的結(jié)構(gòu)與性質(zhì)課時(shí)作業(yè)含解析新人教版選修5
- 2024高中地理第四章自然環(huán)境對(duì)人類活動(dòng)的影響4自然災(zāi)害對(duì)人類的危害課時(shí)作業(yè)含解析湘教版必修1
- 2024高中生物第五章生態(tài)系統(tǒng)及其穩(wěn)定性第5節(jié)生態(tài)系統(tǒng)的穩(wěn)定性精練含解析新人教版必修3
- 2024高中語(yǔ)文第二課千言萬(wàn)語(yǔ)總關(guān)“音”第2節(jié)耳聽為虛-同音字和同音詞練習(xí)含解析新人教版選修語(yǔ)言文字應(yīng)用
- 2024高中語(yǔ)文精讀課文一第1課1長(zhǎng)安十年作業(yè)含解析新人教版選修中外傳記蚜
- 2024高考?xì)v史一輪復(fù)習(xí)方案專題六古代中國(guó)經(jīng)濟(jì)的基本結(jié)構(gòu)與特點(diǎn)專題綜合測(cè)驗(yàn)含解析人民版
- 郵政銀行借款合同
- 2024春期國(guó)開電大??啤吨袊?guó)古代文化常識(shí)》在線形考(形考任務(wù)一至四)試題及答案
- GB/T 17937-2024電工用鋁包鋼線
- 廣告宣傳物料廣告宣傳物料配送方案
- 2024年長(zhǎng)春醫(yī)學(xué)高等??茖W(xué)校單招職業(yè)適應(yīng)性測(cè)試題庫(kù)及答案解析
- 解析幾何-2023上海市高三數(shù)學(xué)一模匯編【教師版】
- 項(xiàng)目維修維保方案
- 上海市浦東新區(qū)2023-2024學(xué)年一年級(jí)上學(xué)期期末考試數(shù)學(xué)試題
- 插圖在小學(xué)英語(yǔ)口語(yǔ)教學(xué)中的運(yùn)用
- 前列腺增生藥物治療
- 人工智能知識(shí)圖譜(歸納導(dǎo)圖)
評(píng)論
0/150
提交評(píng)論