![快速脫碳情景下峰值升溫的數(shù)據(jù)驅(qū)動(dòng)預(yù)測(cè) Data-Driven Predictions of Peak Warming Under Rapid Decarbonization_第1頁](http://file4.renrendoc.com/view14/M06/3F/3C/wKhkGWd5Tp2ATcRuAAFSgVtsyQ0808.jpg)
![快速脫碳情景下峰值升溫的數(shù)據(jù)驅(qū)動(dòng)預(yù)測(cè) Data-Driven Predictions of Peak Warming Under Rapid Decarbonization_第2頁](http://file4.renrendoc.com/view14/M06/3F/3C/wKhkGWd5Tp2ATcRuAAFSgVtsyQ08082.jpg)
![快速脫碳情景下峰值升溫的數(shù)據(jù)驅(qū)動(dòng)預(yù)測(cè) Data-Driven Predictions of Peak Warming Under Rapid Decarbonization_第3頁](http://file4.renrendoc.com/view14/M06/3F/3C/wKhkGWd5Tp2ATcRuAAFSgVtsyQ08083.jpg)
![快速脫碳情景下峰值升溫的數(shù)據(jù)驅(qū)動(dòng)預(yù)測(cè) Data-Driven Predictions of Peak Warming Under Rapid Decarbonization_第4頁](http://file4.renrendoc.com/view14/M06/3F/3C/wKhkGWd5Tp2ATcRuAAFSgVtsyQ08084.jpg)
![快速脫碳情景下峰值升溫的數(shù)據(jù)驅(qū)動(dòng)預(yù)測(cè) Data-Driven Predictions of Peak Warming Under Rapid Decarbonization_第5頁](http://file4.renrendoc.com/view14/M06/3F/3C/wKhkGWd5Tp2ATcRuAAFSgVtsyQ08085.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ADVANCINGEARTHAND
SPACESCIENCES
RESEARCHLETTERData‐DrivenPredictionsofPeakWarmingUnderRapid
10.1029/2024GL111832Decarbonization
KeyPoints:
?WetrainCNNstopredictpeakglobalwarminggiventhemapofrecent
annualtemperaturesandtotaladditionalCO2emissions
?Evenifnet‐zeroemissionsarereachedmid‐century,meanwarmingisvirtu-allycertaintoexceed1.5°C,withevenoddsof2°C
?Thereishighlikelihoodofindividualyearsthatareatleast0.5°Chotterthan
2023eveninthemostambitiousdecarbonizationscenario
SupportingInformation:
SupportingInformationmaybefoundintheonlineversionofthisarticle.
Correspondenceto:
N.S.Diffenbaugh,
diffenbaugh@
Citation:
Diffenbaugh,N.S.,&Barnes,E.A.
(2024).Data‐drivenpredictionsofpeakwarmingunderrapiddecarbonization.
GeophysicalResearchLetters,51,
e2024GL111832.
/10.1029/
2024GL111832
Received7AUG2024Accepted5NOV2024
AuthorContributions:
Conceptualization:NoahS.Diffenbaugh,ElizabethA.Barnes
Datacuration:NoahS.Diffenbaugh,ElizabethA.Barnes
Formalanalysis:ElizabethA.BarnesMethodology:NoahS.Diffenbaugh,ElizabethA.Barnes
Software:ElizabethA.Barnes
Visualization:NoahS.Diffenbaugh,ElizabethA.Barnes
Writing–originaldraft:NoahS.Diffenbaugh
Writing–review&editing:Elizabeth
A.Barnes
?2024.TheAuthor(s).
Thisisanopenaccessarticleunderthetermsofthe
CreativeCommons
Attribution‐NonCommercial‐NoDerivs
License,whichpermitsuseand
distributioninanymedium,providedtheoriginalworkisproperlycited,theuseisnon‐commercialandnomodificationsoradaptationsaremade.
NoahS.Diffenbaugh
1
andElizabethA.Barnes2
1DoerrSchoolofSustainability,StanfordUniversity,Stanford,CA,USA,2DepartmentofAtmosphericScience,ColoradoStateUniversity,FortCollins,CO,USA
AbstractThesevereimpactsassociatedwithrecentrecord‐settingannualglobaltemperatureselevatetheneedtoaccuratelypredictthehottestconditionsthatcouldoccurevenifthemostambitiousdecarbonizationgoalsareachieved.Weuseconvolutionalneuralnetworks(CNNs)topredictpeakglobalwarmingfromrecentobservedtemperaturemapsandfuturecumulativeCO2emissions.FortheSSP1‐1.9decarbonizationscenariothereis>99%probabilitythatmeanglobalwarmingexceeds1.5°C,approximatelyevenoddsthatitreaches2°C,and~90%probabilitythatthehottestyeargloballyexceeds2023byatleast0.5°C.Further,fortheSSP2‐4.5decarbonizationscenario,thereis>90%probabilitythatthehottestannualglobaltemperatureanomalyistwicethe2023anomaly.Thatourframeworkmakeshighlyaccurateout‐of‐samplepredictionsofthehottesthistoricalyearprovidesconfidenceinthepredictedfutureprobabilities,suggestingsubstantialrisksfromtheextremelocalconditionsthatarelikelytoresultfromgloballyhotyearsduringrapiddecarbonization.
PlainLanguageSummaryCalendaryear2023wasthehottestyearonrecordglobally,reaching~1.5°Cabovethepre‐industrial.Manynational,sub‐nationalandnon‐stateactorshavearticulatedambitiousdecarbonizationgoalstostabilizetheglobaltemperature.However,theintensifyingimpactsasindividualyearshaveapproached1.5°Chaveheightenedtheneedtomoreaccuratelypredictnotjustthemeanwarmingbutalso
thehottestyearsthatcouldoccureveninthecontextofrapiddecarbonization.Wetrainneuralnetworksonan
ensembleofglobalclimatemodelsandthenusehistoricalobservationsasinputtothetrainednetworks,thusconstrainingtheuncertaintyinclimatemodelprojectionsbyusingthecurrentstateoftheclimatesystemasthebasisforatrulyout‐of‐sampleprediction.Forthehistoricalperiod,wefindthat,despiteawiderangeofclimatesensitivitiesacrossglobalclimatemodels,theneuralnetworksmakehighlyaccuratepredictionsofthehottesthistoricalyearwhengivenobservedclimatepatternsasout‐of‐sampleinputs.Predictingfuturewarmingunderdifferentcumulativeemissions,wefindthatevenifnet‐zeroemissionsareachievedmid‐century,mean
warmingisvirtuallycertaintoexceed1.5°Candhasevenoddsofreaching2°C,withhighlikelihoodofindividualyearsthatareatleast0.5°Chotterthan2023.
1.Introduction
TheUnitedNationsParisAgreementcodifiedtheinternationalgoalsof“holdingtheincreaseintheglobalaveragetemperaturetowellbelow2°Cabovepre‐industriallevelsandpursuingeffortstolimitthetemperatureincreaseto1.5°Cabovepre‐industriallevels”(UNFCCC,
2015
),leadingtoambitiousdecarbonizationgoalsfocusedonamid‐21st‐centurynet‐zeroemissionstimehorizon(Matthewsetal.,
2020
;UNEP,
2023
).Whileglobalemissionscontinuetoincrease,therateofincreasehasslowed(Friedlingsteinetal.,
2023
).Asaresult,althoughagapremainswithmid‐centurynet‐zerogoals,theglobalemissionstrajectoryiscurrentlyconsistentwithscenariosinwhichemissionsdecreaseduringthe21stcentury,andiswellbelowthoseinwhichemissionscontinuetoincrease(Friedlingsteinetal.,
2023
;Giddenetal.,
2019
;Riahietal.,
2017
).Thesedevelopmentshavegeneratedsubstantialinterestinquantifyinguncertaintyintheglobalwarmingtrajectoryunderdecarbonization,includingtheprobabilitythatmeanglobalwarmingexceeds1.5°Cor2.0°C(e.g.,IPCC,
2018
;Leeetal.,
2021
;Rogeljetal.,
2017
).
LiketheParisAgreement,muchoftheexistingresearchisframedaroundtherelationshipbetweencumulativeemissionsandglobaltemperaturechange.However,althoughthefirst‐orderrelationshipisrobust(Leeetal.,
2021
;Matthews&Caldeira,
2008
;Matthewsetal.,
2009
;Matthews&Wynes,
2022
),anumberofun-certaintiesremain,includingintheexactamountofwarmingforagivenlevelofcumulativeemissions(e.g.,Matthews&Wynes,
2022
),theexactcarbonbudgetforagivenlevelofwarming(e.g.,Lambolletal.,
2023
;
DIFFENBAUGHANDBARNES1of10
19448007,2024,23,
10.1029/2024GL111832
ADVANCINGEARTHANDSPACESCIENCES
GeophysicalResearchLetters
Downloadedfrom
/doi/10.1029/2024GL111832byCochraneChina
,WileyOnlineLibraryon[30/12/2024].SeetheTermsandConditions(
/terms-and-conditions
)onWileyOnlineLibraryforrulesofuse;OAarticlesaregovernedbytheapplicableCreativeCommonsLicense
industrial(R.Rohde,
2024
;Schmidt,
2024
;Figure1)—haveheightenedtheneedtoaccuratelypredictnotjusttheforcedglobaltemperatureresponsebutalsothehottestindividualyearsthatcouldoccurevenifthemostambitiousdecarbonizationgoalsareachieved.
Withthatmotivation,weuseconvolutionalneuralnetworks(CNNs)toquantifytheprobabilityofpeakglobalwarmingunderdifferentdecarbonizationscenarios.Webuildonrecentworkusingneuralnetworkstopredictthetimeuntilagivenforcedtemperatureresponseisreached(Diffenbaugh&Barnes,
2023
).Akeyadvantageofthisframeworkisthecapacitytoconstrainclimatemodeluncertaintyusingtheobservedclimateasthebasisforanout‐of‐sampleprediction.Inthecurrentstudy,wetrainCNNstopredictthedistributionofpeakforcedtem-peratureresponseandmaximumannualtemperaturefrom(a)mapsofannualtemperaturesimulatedbyanensembleofglobalclimatemodels(GCMs)and(b)remainingcumulativeCO2emissions.Toquantifyuncer-tainty,theCNNarchitectureisconstructedtopredicttheparametersofasinh‐arcsinhconditionaldistribution(SHASH(Barnesetal.,
2023
;C.Jones&Pewsey,
2019
;M.C.Jones&Pewsey,
2009
)),andwetrainmultipleCNNsusingdifferentinitialrandomseedstoproducederiveddistributionsthatcapturemultiplesourcesofuncertainty.OncetheCNNsaretrained,weuseobservedmapsofrecentannualtemperatureanomaliestopredictthedistributionofpeakwarmingunderdifferentlevelsoffuturecumulativeemissions.
2.MaterialsandMethods
2.1.DataSets
TotraintheCNNsacrossarangeofdecarbonizationpathways,wepoolresultsfrommultiplerealizationsofmultipleGCMsintheSSP1‐1.9,SSP1‐2.6andSSP2‐4.5decarbonizationscenariosarchivedinPhase6oftheCoupledModelIntercomparisonProject(CMIP6(Eyringetal.,
2016
);Figure1,TableS1inSupportingInfor-mationS1).AsinDiffenbaughandBarnes(
2023
),weselectthoseGCMsthathavearchived≥5realizationsinordertocapturetheinfluenceofinternalclimatevariability,butonlyinclude5realizationsfromeachinordertoweightthoseGCMsevenly.OnelimitationisthatonlyafewGCMshavearchivedatleast5realizationsintheCMIP6scenariosthatreachnet‐zeroduringthe21stcentury(SSP1‐1.9andSSP1‐1.6;TableS1inSupportingInformationS1).Giventheimportanceofincludingabroadrangeofclimatesensitivities,weexpandthetrainingdatasetbyalsoincludingonerealizationofeachavailableGCM,asintheIPCC's“onemodel,onevote”approach.
Withinthis“grandensemble”,wedefinethepeakforcedresponseforeachensemblememberseparately.Wefiteachrealization'sglobalmeantemperaturetimeseriesfrom2000to2100withacubicfunction,andthemaximumofthiscubicfitdefinesthepeakforcedresponse(FigureS2AinSupportingInformationS1).Themaximumannualtemperatureissimilarlydefinedseparatelyforeachrealization,exceptthatnocubicfitisapplied(FigureS2BinSupportingInformationS1).
WeusetheBerkeleyEarthgriddedtemperatureobservationsasourprimaryobservationaldataset.Althoughtheglobaltemperaturesynthesisisveryconsistentbetweenobservationaldatasets(Gulevetal.,
2021
),therecanbedifferencesintheexactspatialpatternsinagivenyear(e.g.,NCEI,
2024
;R.Rohde,
2024
).However,theneuralnetworkpredictionsoftheevolutionoftheglobaltemperatureresponseareconsistentbetweengriddeddatasets(Diffenbaugh&Barnes,
2023
),andwefindverycloseagreementinthepredictionofthehistoricalmaximumannualtemperatureusinggriddeddatasetsfromBerkeleyEarth(R.A.Rohde&Hausfather,
2020
)andNASA(GISTEMP,
2021
)(Figure1).
Forallobservedandsimulateddatasets,weinterpolatetheannualtemperaturedatatoacommon2.5°×2.5°grid(IPCC,
2013
).Globalmeantemperatureanomalies(thepredictand)arecomputedasdeviationsfromthe1850–1899meanofeachrealization.Surfacetemperatureanomalies(thepredictors)forboththeGCMsandobser-vationsarecomputedasthedifferencefromeachrealization's1975–2004mean.
Forcalculatingcumulativeemissions,wefirstconcatenatethehistoricalemissionsdatafrom(Friedlingsteinetal.,
2022
)withtheSSPemissionsdatafortheremainderofthe21stcentury(Giddenetal.,
2019
;IIASA,
2018
;Riahietal.,
2017
),andthenfollowtheSSPextensionsof(Meinshausenetal.,
2020
)bylinearlyinterpolatingatanannualresolutionoutto2250(FigureS7AinSupportingInformationS1).Foragivenyear,thecumulativeemissionsremainingarethencomputedasthesumoverallpositiveemissionsfrom1850to2250minusthecumulativesum‐to‐date.SinceSSP1‐1.9andSSP1‐2.6bothreachnet‐zerooverthe21stcentury,thisdefinitionleadstonegativeemissionsremainingpriorto2100(FigureS7binSupportingInformationS1).
DIFFENBAUGHANDBARNES3of10
Downloadedfrom
/doi/10.1029/2024GL111832byCochraneChina
,WileyOnlineLibraryon[30/12/2024].SeetheTermsandConditions(
/terms-and-conditions
)onWileyOnlineLibraryforrulesofuse;OAarticlesaregovernedbytheapplicableCreativeCommonsLicense
2.2.ConvolutionalNeuralNetworks(CNNs)
2.2.1.ArchitectureandTrainingoftheCNN
WetrainaCNNtotakesinglemapsofannual‐meannear‐surfacetemperature(“tas”)andtheadditionalcu-mulativeCO2emissionsremaining,andpredictthepeakwarming(asananomalyfrom1850to1899)thatwilloccurby2100(FigureS1inSupportingInformationS1).Followingpreviouswork,wetraintheCNNtopredictthefourparametersofasinh‐arcsinh(SHASH)distribution(Barnesetal.,
2023
;C.Jones&Pewsey,
2019
;M.C.Jones&Pewsey,
2009
):mu;sigma;gamma;andtau.Thus,foreachinputintothenetwork,thenetworkpredictsafullconditionaldistributionofthewarmingremainingthrough2100(FigureS3inSupportingInformationS1).Fromthis,wecomputethepredictedpeakwarmingasthesumofthecurrentyear'stemperatureanomalyplusthepredictedremainingwarming.AlthoughtheSHASHtakesfourparameters,wehavefoundthattrainingtheCNNtopredictonlythefirstthree(andfreezingtau=1.0)producessimilarresultstotrainingallfour(seeFigureS5inSupportingInformationS1).
TheCNNhasaninitialcircularpaddinglayerthataccountsforthediscontinuityinlongitudeatthePrimeMeridian.Fromthere,theinputmapisfedthroughthreeconvolutionallayerswith32kernelseachofsize5×5,3×3and3×3,respectively.Eachconvolutionallayerisfollowedbyamaxpoolinglayerwithkernelsize2×2andstrideof2toreducethedimensionality.ThefinalmaxpoolinglayerisfollowedbyaflattenlayertowhichtheinputcumulativeCO2emissionsremainingscalarisappended.WeseparatethepredictionsoftheSHASHpa-rameters,therebyallowingthenetworktolearndifferentstrategiesifnecessary.Eachparameterpathwayconsistsofthreedenselayersof10unitseach.TheinputcumulativeCO2emissionsremainingareonceagainconcate-natedtotheoutputofthedenseblockandtheresultingtensorisfedintoafinaldenseblockof5units.Theoutputisprocessedthrougharescalinglayerpriortopredictingeachparameter.Weusetherectifiedlinearunit(ReLu)forallactivationsexceptforthefinaloutput,whichusesahyperbolictangent(Tanh)activation.ThefullCNNsetupdepictedinFigureS1inSupportingInformationS1containsatotalof273,992trainableparameters.However,wefreezethefourthparameter(tau)asitsinclusiondidnotimproveourresults(comparethe“default”to“hp9”and“hp10”inFigureS5inSupportingInformationS1).Thus,thefinalCNNarchitecturecontains210,326trainableparameters.
ThetrainingsetiscreatedbyrandomlyselectingtworealizationsfromeachGCMthathasatleast5realizations(“multi‐memberGCMs”),andrandomlyselecting80%ofthesingle‐memberrealizations(whichincludethefirstrealizationfromthemulti‐memberGCMs).Thevalidationset,whichisusedforearlystopping,iscreatedbyrandomlyselectingoneoftheremainingmembersofthemulti‐memberGCMsand10%oftheremainingsingle‐memberrealizations.Thetestingsetisthencreatedbycombiningalloftheremainingrealizations,whichamountstoonefromthemulti‐memberGCMsand10%ofthesingle‐memberrealizations.TheCNNsaretrainedtominimizethenegativelog‐likelihoodlossusingtheAdamoptimizerwithabatchsizeof32,learningrateof1.0e?05,weightdecayofzero,andepsparameterof1.0e?07.Weemployearlystoppingwhenthevalidationlossnolongerdecreasesafterapatienceof20epochstohelpavoidoverfitting.
WeconductanumberofteststoexplorethesensitivityofourresultstotheCNNarchitecturechoicesbytraining5differentCNNsforeachnetworkhyperparameterconfiguration:“hp1‐10”(FigureS5inSupportingInforma-tionS1).ThefiveCNNsforeachconfigurationdifferonlybytheirrandomseed,whichsetsboththetraining/validation/testingsplitaswellastherandominitializationoftheweights.Thearchitectureusedhere(“default”)resultsinlowperformancemetricssuchasmeanabsoluteerrorandloss,althoughitisreassuringthatotherhyperparameterchoicesleadtosimilarpredictionsfortheobservations(FigureS5inSupportingInformationS1).
2.2.2.UncertaintyQuantification
ThenetworkpredictsaSHASHdistributionoftheremainingwarmingforeachinput,providingameasureofuncertaintyconditionedontheinput.However,trainingdifferentCNNsthatvaryonlyintherandomseedusedtosplitthedataandinitializethenetworkcanresultinarangeofobservationalpredictions(FiguresS4,S5inSupportingInformationS1).Thus,thereisanadditionalsourceofuncertaintynotdirectlycapturedbyeachpredictedSHASH(Barnesetal.,
2023
;Haynesetal.,
2023
).Toaccountforthis,wetrain15+CNNswithdifferingseedsforeachpeakwarmingdefinition(i.e.,peakforcedresponseandmaximumannualtemperature)andselectthefirst15CNNswhosetestinglossislessthan?0.1(FigureS5inSupportingInformationS1providesmetricsforeachofthe15+individualSHASHdistributionpredictions.).Wethencreateaderiveddistributionby
DIFFENBAUGHANDBARNES4of10
19448007,2024,23,Downloadedfrom
/doi/10.1029/2024GL111832byCochraneChina
,WileyOnlineLibraryon[30/12/2024].SeetheTermsandConditions(
/terms-and-conditions
)onWileyOnlineLibraryforrulesofuse;OAarticlesaregovernedbytheapplicableCreativeCommonsLicense
GeophysicalResearchLetters10.1029/2024GL111832
Figure2.Probabilityofpeakwarminginresponsetocumulativeemissions.(a)Probabilitythatthepeakforcedtemperatureresponse(comparedtothe1850–1899pre‐industrialbaseline)remainsbelowarangeofthresholdsasafunctionofremainingcumulativeemissions,predictedbyCNNsinitializedusingobservationsin2023.Verticaldottedlinesdenotetheremainingemissionsunderthreedecarbonizationscenarios.(b)TheCNN‐predictedderiveddistributionsforthepeakforcedresponseby2100,correspondingtothecross‐sectionsshownasverticaldottedlinesin(a).(c)Asin(a)butforthemaximumannualtemperatureby2100.(d)Asin(b),butforthemaximumannualtemperatureby2100(i.e.,correspondingtothecross‐
sectionsshownasverticaldottedlinesin(c)).
combiningthepredictionsacrossall15CNNs.Specifically,foreachpredictionontheobservations(i.e.,eachsetofinputs)weobtain15SHASHdistributionsoftheremainingwarming.Wethentake50,000randomdrawsfromeachpredictedSHASHdistributionresultingin15×50,000=750,000randomvalues.These750,000valuesthuscompriseourpredictedderiveddistributionfromwhichwecanplottheresultingprobabilitydensityfunctionandcalculateprobabilities(Figure
2
).Allresultsdiscussedinthetextarequantifiedfromthisderiveddistribution.IndividualSHASHpredictionsandmetricsarepresentedinFiguresS3–S5inSupportingInformationS1.
Ourdecisiontoemployaderiveddistributionforquantifyinguncertaintyissupportedbythefactthatthetestinguncertainty(anderror)introducedbythechoiceintraining/validation/testingsplitismuchlargerthantheun-certaintyduetotherandominitializationofthenetworkweights(FigureS6inSupportingInformationS1).Sinceweemploya“one‐model,one‐vote”approachfortheGCMensemble,everytraining/validation/testingsplitisequallyvalidpresumingthatthenetworkdoesareasonablejobtraining(i.e.,meetsourcriteriathatthelossbelessthan?0.1).Becauseeachofthe15CNNsareequallyvalid,wechoosetocombineall15predictionsintoasinglederiveddistributiontocapturetheuncertaintyfromthedatasplitratherthanchooseoneCNN,whichwouldfailtocapturethisadditionalsourceofclimatemodeluncertainty.
DIFFENBAUGHANDBARNES
5of10
19448007,2024,23,
10.1029/2024GL111832
ADVANCINGEARTHANDSPACESCIENCES
GeophysicalResearchLetters
Downloadedfrom
/doi/10.1029/2024GL111832byCochraneChina
,WileyOnlineLibraryon[30/12/2024].SeetheTermsandConditions(
/terms-and-conditions
)onWileyOnlineLibraryforrulesofuse;OAarticlesaregovernedbytheapplicableCreativeCommonsLicense
3.Results
Wefirsttesttheaccuracyofourpredictionframeworkduringthehistoricalperiod.WetrainmultipleCNNsontheCMIP6Historicalsimulations(extendingto2023usingtheSSP1‐1.9simulations).Then,foreachhistoricalyear,weusetheobservedmapsofannualtemperatureanomaliesandremainingcumulativeCO2emissions(through2023)topredictthemaximumannualtemperaturethatwillbereachedby2023.Theobservations‐basedpre-dictionisquitestablethroughtime,andisverysimilarwhenusinginputsfromNASA(“GISTEMP”;Figure1c)orBerkeleyEarth(“BEST”;Figure1d).Further,theactualhottesthistoricalyearfallsveryclosetothemeanofCNNpredictionsmadeusinginputsfrom1980to1999,andwithinthe“l(fā)ikely”range(66%intheIPCCun-certaintyguidance(Mastrandreaetal.,
2011
))forbothobservedtemperaturedatasets.
WenextusetheCNNstrainedacrosstheSSPdecarbonizationscenariostopredictthedistributionofpeakwarminggiven2023temperatureobservationsandvaryinglevelsofcumulativeemissions(Figure
2
).WefindthatthetimeseriesofpeakwarmingpredictedbytheCNNsisrobusttotheinitializationyear,particularlyforthepasttwodecades(Figures1eand1f).Further,theuncertaintiesintheobservations‐basedCNNpredictionsaresubstantiallysmallerthantheuncertaintyintheGCMsimulationsonwhichtheCNNsaretrained,particularlyfortherapiddecarbonizationscenarios(Figures1e,1f,S8inSupportingInformationS1).
Althoughthemedianpredictionisgenerallyproportionaltothecumulativeemissions,thedistributionsbecomemorepositivelyskewedascumulativeemissionsincrease,withtheuppertailincreasingatafasterratethanthelowertail(Figures
2a
and
2c
).ForSSP1‐1.9,whichreachesnet‐zeroCO2emissionsinthemid‐2050sfollowedbydeepnegativeemissions,theCNN‐predictedpeakforcedresponseby2100is“virtuallycertain”(Mastrandreaetal.,
2011
)toexceed1.60°C(medianprediction:1.96°C),andthemaximumannualtemperatureis“virtuallycertain”toexceed1.80°C(medianprediction:2.18°C).ForSSP1‐2.6,whichreachesnet‐zeroCO2emissionsinthemid‐2070s,thepeakedforcedresponseis“virtuallycertain”toexceed1.83°C(medianprediction:2.22°C),andthemaximumannualtemperatureis“virtuallycertain”toexceed2.01°C(medianprediction:2.43°C).ForSSP2‐4.5,whichdoesnotreachnet‐zerointhe21stcentury,thepeakforcedresponseis“virtuallycertain”toexceed2.69°C(medianprediction:3.33°C),andthemaximumannualtemperatureis“virtuallycertain”toexceed2.76°C(medianprediction:3.46°C).
Themagnitudeofpredictedpeakwarmingsuggeststhat,evenifrapiddecarbonizationisachieved,regionalconditionsarelikelytobeconsiderablymoreseverethanwhatpeopleandecosystemshaveexperiencedtodate.Forexample,foranannualglobaltemperatureanomalyof~2°C,regionalconditionsarehighlylikelytobehotterthanin2023,includingastrongpossibilityofregionaltemperatureanomaliesthatareatleastdoublethe2023regionalanomaly(Figure3a).Likewise,forasingleclimaterealizationwhosemaximumannualglobaltem-peratureanomalyreaches~2°C,themaximumannualdailyprecipitationinthehottestyearsexceedsthebaselinemaximumovermostoftheglobe,includingwidespreadincreasesofatleast25%overcontinentalareasandevenlargerincreasesovermuchofthetropics(Figure3c).However,suchrapiddecarbonizationisfarfromguaranteed(UNEP,
2023
),andthereisveryhighlikelihoodthatthemaximumannualglobaltemperatureanomalyreaches2.5°Cforadditionalcumulativeemissionsof2,000GtCO2and3.0°Cforadditionalcumulativeemissionsof3,500GtCO2(Figure
2c
).Foranannualglobaltemperatureanomalyof~3°C,regionalconditionsarevirtuallycertaintobehotterthanin2023overmostillustrativeregions,includingastrongpossibilityofregionaltem-peratureanomaliesthatareatleasttriplethe2023regionalanomaly(Figure3a).
4.Discussion
Ourresultssuggestvirtualcertainty(>99%intheIPCCuncertaintyguidance(Mastrandreaetal.,
2011
))thatreachingnet‐zeroCO2emissionsbymid‐centurywillnotholdtheglobalforcedtemperatureresponsebelow1.5°C.Whilethereareavarietyofdefinitionsforglobaltemperaturethresholds(e.g.,Bettsetal.,
2023
),theforcedresponseisamongthemostconservative.Hence,ourresultsraisethelikelihoodofabroadsuiteofimpactsthatareexpectedtooccurbeyondthe1.5°Cthreshold,includingonterrestrialandmarineecosystems,humanhealth,livelihoods,economicgrowth,andfoodandwatersecurity(IPCC,
2018
).
Inaddition,themedianCNN‐predictedpeakforcedresponseby2100forSSP1‐1.9emissionsis1.96°C(Figure1),andourresultssuggestthatotherambitiousdecarbonizationpathwaysthatholdfuturecumulativeemissionsto~500GtCO2arealsoonly~50%likelytoavoidapeakforcedresponseof2°C(Figure
2a
).Absentadaptation,thislevelofwarmingposes“high”to“veryhigh”riskstonaturalandhumansystemsacrossthe
DIFFENBAUGHANDBARNES6of10
Downloadedfrom
/doi/10.1029/2024GL111832byCochraneChina
,WileyOnlineLibraryon[30/12/2024].SeetheTermsandConditions(
/terms-and-conditions
)onWileyOnlineLibraryforrulesofuse;OAarticlesaregovernedbytheapplicableCreativeCommonsLicense
comprehensiveareasassessedbytheIPCC(IPCC,
2022
).Further,ourresultssuggestthatthepeakforcedresponseisverylikelytoexceed2°Cifadditionalcumulativeemissionsexceed1,000GtCO2,andislikelytoexceed3°Cifadditionalcumulativeemissionsexceed3,500GtCO2(Figure
2a
).Absentadaptation,3°Cofmeanglobalwarmingposes“veryhigh”risks(IPCC,
2022
).
Giventheimportanceofextremeeventsforclimatechangeimpacts(e.g.,IPCC,
2012
),themagnitudeofindi-vidual
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 圖書購銷合同范例
- 工程管理咨詢合同
- 消防防火封堵工程施工合同
- 建筑工程承包中介合同
- 2025年中山b2貨運(yùn)上崗證模擬考試
- 小學(xué)二年級(jí)數(shù)學(xué)下冊(cè)暑假口算題
- 電力合作研究合同(2篇)
- 電力調(diào)度合同(2篇)
- 2024-2025學(xué)年高中化學(xué)專題3從礦物到基礎(chǔ)材料第1單元第1課時(shí)鋁及鋁合金練習(xí)含解析蘇教版必修1
- 人教版八年級(jí)地理上冊(cè)2.1《地形和地勢(shì)》聽課評(píng)課記錄1
- 2 找春天 公開課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)
- 2025年江蘇南京水務(wù)集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 護(hù)理人文知識(shí)培訓(xùn)課件
- 建筑工程施工安全管理課件
- 五年級(jí)上冊(cè)數(shù)學(xué)習(xí)題課件 簡(jiǎn)便計(jì)算專項(xiàng)整理 蘇教版 共21張
- 疼痛科的建立和建設(shè)
- 運(yùn)動(dòng)技能學(xué)習(xí)PPT課件
- 第六編元代文學(xué)
- 高考語文古詩詞必背重點(diǎn)提綱
- 超星爾雅學(xué)習(xí)通《大學(xué)生心理健康教育(蘭州大學(xué)版)》章節(jié)測(cè)試含答案
- 2020譯林版高中英語選擇性必修二單詞默寫表
評(píng)論
0/150
提交評(píng)論