新疆科技學(xué)院《競賽機器人設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
新疆科技學(xué)院《競賽機器人設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
新疆科技學(xué)院《競賽機器人設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
新疆科技學(xué)院《競賽機器人設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
新疆科技學(xué)院《競賽機器人設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁新疆科技學(xué)院《競賽機器人設(shè)計》

2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在一個利用人工智能進行天氣預(yù)報的系統(tǒng)中,為了提高預(yù)測的精度和時效性,以下哪個因素可能是需要重點關(guān)注和改進的?()A.氣象數(shù)據(jù)的質(zhì)量和多樣性B.模型的復(fù)雜度和計算效率C.模型的融合和集成D.以上都是2、人工智能中的生成對抗網(wǎng)絡(luò)(GAN)在圖像生成、數(shù)據(jù)增強等方面表現(xiàn)出色。假設(shè)要使用GAN生成逼真的藝術(shù)圖像,以下關(guān)于GAN訓(xùn)練過程的描述,哪一項是不準(zhǔn)確的?()A.生成器試圖生成逼真的圖像來欺騙判別器,判別器則努力區(qū)分真實圖像和生成的圖像B.訓(xùn)練過程中,生成器和判別器的性能會交替提升,直到達(dá)到平衡C.一旦GAN訓(xùn)練完成,生成器就能夠獨立生成高質(zhì)量的圖像,無需判別器的參與D.調(diào)整生成器和判別器的網(wǎng)絡(luò)結(jié)構(gòu)和參數(shù),可以影響生成圖像的質(zhì)量和多樣性3、人工智能在智能客服領(lǐng)域的應(yīng)用越來越廣泛。以下關(guān)于人工智能智能客服的說法,不正確的是()A.能夠快速回答常見問題,提高客戶服務(wù)的響應(yīng)速度B.可以通過自然語言交互理解客戶的需求和意圖C.智能客服能夠完全替代人工客服,提供同樣優(yōu)質(zhì)和全面的服務(wù)D.仍需要不斷改進和優(yōu)化,以提高回答的準(zhǔn)確性和滿意度4、在人工智能的文本生成任務(wù)中,除了生成連貫的文字內(nèi)容,還需要考慮語言的邏輯性和合理性。假設(shè)我們要生成一篇新聞報道,以下關(guān)于文本生成的說法,哪一項是正確的?()A.可以完全依靠隨機生成來創(chuàng)造新穎的內(nèi)容B.語言模型的規(guī)模越大,生成的質(zhì)量一定越高C.預(yù)訓(xùn)練語言模型結(jié)合微調(diào)可以提高生成效果D.不需要考慮語法和語義的約束5、當(dāng)利用人工智能進行藥物研發(fā),例如預(yù)測藥物分子的活性和副作用,以下哪種技術(shù)和數(shù)據(jù)可能是重要的支撐?()A.化學(xué)信息學(xué)和分子模擬B.生物醫(yī)學(xué)數(shù)據(jù)和機器學(xué)習(xí)C.藥物臨床試驗數(shù)據(jù)和統(tǒng)計分析D.以上都是6、在人工智能的醫(yī)療影像診斷中,深度學(xué)習(xí)模型可以輔助醫(yī)生發(fā)現(xiàn)病變。假設(shè)要評估一個深度學(xué)習(xí)模型在乳腺X光影像診斷中的性能,以下哪個指標(biāo)是最重要的?()A.準(zhǔn)確率B.召回率C.F1值D.特異性7、人工智能中的人工神經(jīng)網(wǎng)絡(luò)具有強大的學(xué)習(xí)能力。假設(shè)我們正在訓(xùn)練一個多層神經(jīng)網(wǎng)絡(luò)來預(yù)測股票價格的走勢。如果網(wǎng)絡(luò)的訓(xùn)練數(shù)據(jù)包含了過多的噪聲,會產(chǎn)生什么后果?()A.網(wǎng)絡(luò)的泛化能力增強B.網(wǎng)絡(luò)的訓(xùn)練速度加快C.網(wǎng)絡(luò)可能對新的數(shù)據(jù)預(yù)測不準(zhǔn)確D.網(wǎng)絡(luò)的結(jié)構(gòu)變得更加復(fù)雜8、在人工智能的機器人控制領(lǐng)域,強化學(xué)習(xí)可以讓機器人通過與環(huán)境的交互不斷優(yōu)化自己的行為。假設(shè)一個機器人需要學(xué)會在不同地形上行走,以下哪個因素對于強化學(xué)習(xí)的效果影響最大?()A.環(huán)境的復(fù)雜度B.機器人的初始狀態(tài)C.獎勵函數(shù)的設(shè)計D.機器人的硬件性能9、人工智能中的生成對抗網(wǎng)絡(luò)(GAN)具有強大的生成能力。假設(shè)使用GAN生成逼真的圖像,以下關(guān)于GAN的描述,哪一項是不正確的?()A.GAN由生成器和判別器組成,兩者通過對抗訓(xùn)練不斷優(yōu)化B.GAN可以學(xué)習(xí)到數(shù)據(jù)的分布特征,從而生成新的、與真實數(shù)據(jù)相似的樣本C.GAN生成的圖像在質(zhì)量和真實性上可以與真實拍攝的圖像完全無法區(qū)分D.調(diào)整GAN的網(wǎng)絡(luò)結(jié)構(gòu)和訓(xùn)練參數(shù)可以影響生成圖像的效果10、在自然語言處理領(lǐng)域,情感分析是一項重要的任務(wù)。假設(shè)要分析大量的在線商品評論,以確定消費者對產(chǎn)品的態(tài)度是積極、消極還是中性。在進行情感分析時,以下哪種方法可能不是最有效的?()A.基于詞典的方法,通過查找預(yù)定義的情感詞來判斷情感傾向B.利用深度學(xué)習(xí)模型,如循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),自動學(xué)習(xí)語言的特征和模式C.僅僅依靠人工閱讀和判斷,不使用任何自動化的技術(shù)D.結(jié)合詞向量和機器學(xué)習(xí)分類算法,如支持向量機(SVM)11、人工智能在教育領(lǐng)域的應(yīng)用有望實現(xiàn)個性化學(xué)習(xí)和智能輔導(dǎo)。假設(shè)一個在線學(xué)習(xí)平臺使用人工智能為學(xué)生提供個性化課程推薦,以下關(guān)于教育領(lǐng)域人工智能應(yīng)用的描述,正確的是:()A.人工智能可以完全根據(jù)學(xué)生的學(xué)習(xí)成績來推薦課程,無需考慮其他因素B.學(xué)生的學(xué)習(xí)習(xí)慣、興趣和知識水平等因素都應(yīng)該被納入人工智能的課程推薦模型中C.人工智能在教育領(lǐng)域的應(yīng)用可能會導(dǎo)致學(xué)生過度依賴技術(shù),降低自主學(xué)習(xí)能力D.教育領(lǐng)域的人工智能應(yīng)用不需要考慮教育倫理和學(xué)生隱私保護問題12、在人工智能的倫理原則中,“公平性”是一個重要的考量因素。假設(shè)一個人工智能招聘系統(tǒng)對不同性別、種族的候選人給出了不同的評價結(jié)果。以下關(guān)于解決這種公平性問題的方法,哪一項是不正確的?()A.對數(shù)據(jù)進行預(yù)處理,消除可能導(dǎo)致偏差的因素B.定期審查和更新模型,以確保其公平性C.故意引入偏差,以平衡不同群體之間的差異D.建立公平性評估指標(biāo),對模型進行監(jiān)測和改進13、在人工智能的研究中,模型的可解釋性是一個重要的問題。假設(shè)開發(fā)了一個用于預(yù)測股票價格的人工智能模型,但用戶對模型的決策過程和結(jié)果缺乏理解和信任。以下哪種方法能夠提高模型的可解釋性,讓用戶更好地理解模型是如何做出預(yù)測的?()A.繪制復(fù)雜的模型架構(gòu)圖B.提供特征重要性分析C.使用更多的隱藏層D.增加模型的參數(shù)數(shù)量14、人工智能在金融領(lǐng)域的應(yīng)用不斷拓展,假設(shè)一個銀行使用人工智能系統(tǒng)進行信用評估,以下關(guān)于這種應(yīng)用的描述,正確的是:()A.人工智能信用評估系統(tǒng)能夠完全取代人工評估,不會出現(xiàn)任何錯誤B.數(shù)據(jù)的質(zhì)量和特征選擇對人工智能信用評估系統(tǒng)的準(zhǔn)確性至關(guān)重要C.人工智能信用評估系統(tǒng)只考慮客戶的財務(wù)數(shù)據(jù),不考慮其他非財務(wù)因素D.銀行不需要對人工智能信用評估系統(tǒng)的結(jié)果進行審核和監(jiān)督15、強化學(xué)習(xí)是人工智能的一個重要分支,常用于訓(xùn)練智能體在環(huán)境中做出最優(yōu)決策。假設(shè)一個智能機器人需要在迷宮中找到出口,通過與環(huán)境的交互獲得獎勵。在這種情況下,以下關(guān)于強化學(xué)習(xí)算法的選擇,哪一項是最合適的?()A.Q-learning算法,通過估計狀態(tài)-動作值函數(shù)來選擇最優(yōu)動作B.策略梯度算法,直接優(yōu)化策略以最大化期望回報C.蒙特卡羅方法,通過隨機采樣來估計價值函數(shù)D.以上算法都不合適,應(yīng)該選擇其他方法二、簡答題(本大題共4個小題,共20分)1、(本題5分)談?wù)勅斯ぶ悄茉谥悄茇攧?wù)管理投資決策中的應(yīng)用。2、(本題5分)說明農(nóng)業(yè)領(lǐng)域中的人工智能創(chuàng)新。3、(本題5分)解釋人工智能在藝術(shù)創(chuàng)作中的角色。4、(本題5分)簡述樸素貝葉斯算法的基本原理。三、操作題(本大題共5個小題,共25分)1、(本題5分)使用Python中的TensorFlow框架,構(gòu)建一個生成對抗網(wǎng)絡(luò)(GAN),用于生成手寫數(shù)字圖像。訓(xùn)練GAN模型,使其能夠生成逼真的手寫數(shù)字圖像,并展示生成的圖像效果。2、(本題5分)使用OpenCV和深度學(xué)習(xí)模型,實現(xiàn)對視頻中的行人行為進行分析,例如行走、跑步、停留等。對視頻數(shù)據(jù)進行分幀處理,提取行人的特征,訓(xùn)練模型并在新的視頻中進行實時檢測和分類,同時計算準(zhǔn)確率和召回率。3、(本題5分)使用Python的PyTorch框架,構(gòu)建一個基于注意力機制的Seq2Seq模型,用于機器翻譯任務(wù),分析注意力權(quán)重的變化。4、(本題5分)在PyTorch中,構(gòu)建一個基于Transformer架構(gòu)的語言模型,對文本進行生成。研究不同的訓(xùn)練策略和超參數(shù)對生成質(zhì)量的影響。5、(本題5分)利用Python中的Scikit-learn庫,實現(xiàn)One-ClassSVM算法對異常數(shù)據(jù)進行檢測,通過調(diào)整核函數(shù)和參數(shù)優(yōu)化檢測效果。四、案例分析題(本大題共4個小題,共40分)1、(本題10分)研

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論