下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
裝訂線裝訂線PAGE2第1頁,共3頁吉林藝術(shù)學院《字體創(chuàng)意》
2023-2024學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺中的視覺跟蹤算法常用于跟蹤運動目標。假設(shè)要跟蹤一只在森林中奔跑的動物,以下關(guān)于視覺跟蹤算法的描述,哪一項是不正確的?()A.基于模型的跟蹤算法通過建立目標的模型來預(yù)測其位置和狀態(tài)B.基于特征的跟蹤算法依賴于目標的顯著特征進行跟蹤C.視覺跟蹤算法在目標發(fā)生快速變形或完全遮擋時仍能保持準確跟蹤D.結(jié)合多種線索和信息的融合跟蹤算法可以提高跟蹤的穩(wěn)定性和可靠性2、在計算機視覺的圖像生成任務(wù)中,假設(shè)要生成逼真的人臉圖像。以下關(guān)于生成模型的架構(gòu)選擇,哪一項是需要特別關(guān)注的?()A.選擇傳統(tǒng)的多層感知機(MLP)架構(gòu)B.采用生成對抗網(wǎng)絡(luò)(GAN)架構(gòu),通過對抗訓(xùn)練生成高質(zhì)量圖像C.運用卷積神經(jīng)網(wǎng)絡(luò)(CNN)架構(gòu),但不使用池化層D.構(gòu)建循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)架構(gòu),處理圖像的序列信息3、在計算機視覺中,圖像分類是一項基礎(chǔ)任務(wù)。假設(shè)我們有一組包含各種動物的圖像數(shù)據(jù)集,需要訓(xùn)練一個模型來準確區(qū)分不同的動物類別。在選擇圖像分類模型時,以下哪種模型架構(gòu)通常在處理大規(guī)模圖像數(shù)據(jù)集時表現(xiàn)出色?()A.傳統(tǒng)的機器學習算法,如支持向量機(SVM)B.淺層的卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.深度卷積神經(jīng)網(wǎng)絡(luò),如ResNetD.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)4、計算機視覺中的圖像修復(fù)旨在恢復(fù)圖像中缺失或損壞的部分。假設(shè)一張珍貴的老照片有部分區(qū)域損壞,需要進行修復(fù)以還原其完整的內(nèi)容。以下哪種圖像修復(fù)方法在處理這種情況時能夠生成更自然和逼真的結(jié)果?()A.基于擴散的圖像修復(fù)B.基于紋理合成的圖像修復(fù)C.基于深度學習的圖像修復(fù)D.基于樣例的圖像修復(fù)5、在計算機視覺的圖像配準任務(wù)中,需要將不同視角或時間拍攝的圖像進行對齊。假設(shè)要將兩張具有一定旋轉(zhuǎn)和平移差異的圖像進行配準,以下關(guān)于圖像配準方法的描述,正確的是:()A.基于特征點匹配的圖像配準方法對圖像的變形和光照變化不敏感B.直接使用像素值的相似性度量就能實現(xiàn)準確的圖像配準C.圖像配準不需要考慮圖像的分辨率和比例尺差異D.深度學習在圖像配準中的應(yīng)用還不成熟,不如傳統(tǒng)方法有效6、當進行圖像的顯著性檢測時,假設(shè)要從一張復(fù)雜的圖像中突出顯示出人們視覺上最關(guān)注的區(qū)域,例如在一張風景圖像中突出顯示出一座顯眼的山峰。以下哪種方法在計算圖像的顯著性時可能更準確?()A.基于頻率域分析的方法,計算圖像的頻譜特征B.基于對比度的方法,比較區(qū)域與周圍的差異C.隨機選擇圖像中的部分區(qū)域作為顯著性區(qū)域D.不進行任何計算,主觀判斷顯著性區(qū)域7、在計算機視覺的目標跟蹤任務(wù)中,目標可能會被遮擋、變形或快速移動。假設(shè)要跟蹤一個在人群中快速移動的人物,以下哪種跟蹤算法可能更適合應(yīng)對這種復(fù)雜情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于均值漂移的跟蹤算法D.基于模板匹配的跟蹤算法8、計算機視覺在安防監(jiān)控領(lǐng)域有重要應(yīng)用。假設(shè)要通過攝像頭監(jiān)控一個公共場所,以下關(guān)于計算機視覺在安防監(jiān)控中的應(yīng)用描述,哪一項是不正確的?()A.可以實時檢測異常行為,如人群聚集、奔跑等B.能夠?qū)θ藛T進行身份識別和認證C.計算機視覺系統(tǒng)可以獨立完成所有的安防監(jiān)控任務(wù),不需要人工干預(yù)D.與其他安防設(shè)備和系統(tǒng)集成,提高整體的安全性和防范能力9、在計算機視覺的圖像超分辨率重建中,假設(shè)我們要將低分辨率的圖像重建為高分辨率圖像,同時保持圖像的細節(jié)和紋理。以下哪種深度學習架構(gòu)可能在這方面表現(xiàn)較好?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)C.生成對抗網(wǎng)絡(luò)(GAN)D.自動編碼器(Autoencoder)10、在計算機視覺的車牌識別任務(wù)中,需要從車輛圖像中準確提取車牌號碼。假設(shè)車牌存在傾斜、變形和光照不均等問題。以下哪種車牌識別方法在應(yīng)對這些挑戰(zhàn)時表現(xiàn)更為出色?()A.基于字符分割的車牌識別B.基于模板匹配的車牌識別C.基于深度學習的車牌識別D.基于特征提取的車牌識別11、在計算機視覺的行人檢測任務(wù)中,假設(shè)要在一個擁擠的街道場景中準確檢測出行人,場景中存在光照變化、人群遮擋和復(fù)雜背景。以下哪種特征表示方法在這種情況下可能更具魯棒性?()A.基于形狀的特征,如行人的輪廓B.基于顏色的特征,如行人衣服的顏色C.基于深度學習的特征,通過卷積神經(jīng)網(wǎng)絡(luò)自動學習D.不提取任何特征,直接對原始圖像進行檢測12、在計算機視覺的研究中,數(shù)據(jù)集的質(zhì)量和規(guī)模對模型的訓(xùn)練和性能評估至關(guān)重要。以下關(guān)于數(shù)據(jù)集的描述,不準確的是()A.大規(guī)模、多樣化和標注準確的數(shù)據(jù)集有助于訓(xùn)練出泛化能力強的模型B.一些公開的數(shù)據(jù)集如ImageNet、COCO等為計算機視覺研究提供了重要的基準C.數(shù)據(jù)集的構(gòu)建需要耗費大量的時間和人力,但可以通過數(shù)據(jù)增強技術(shù)來減少對原始數(shù)據(jù)的需求D.數(shù)據(jù)集一旦構(gòu)建完成,就不需要再進行更新和擴展,能夠一直滿足研究的需求13、計算機視覺在無人駕駛中的應(yīng)用至關(guān)重要。假設(shè)要通過車載攝像頭識別道路上的交通標志和標線,以下關(guān)于應(yīng)對復(fù)雜環(huán)境變化的策略,哪一項是不正確的?()A.利用多模態(tài)數(shù)據(jù)融合,如結(jié)合攝像頭和激光雷達的信息B.定期更新模型,適應(yīng)新出現(xiàn)的交通標志和標線C.只依靠單一攝像頭的圖像信息,不考慮其他傳感器D.對不同天氣和光照條件下的數(shù)據(jù)進行增強訓(xùn)練14、在計算機視覺的視頻理解任務(wù)中,例如理解一段體育比賽視頻中的精彩瞬間和戰(zhàn)術(shù),需要對視頻中的時空信息進行有效建模。以下哪種方法在時空建模方面可能具有優(yōu)勢?()A.3D卷積神經(jīng)網(wǎng)絡(luò)B.長短時記憶網(wǎng)絡(luò)C.注意力機制D.以上都是15、計算機視覺中的圖像超分辨率重建旨在提高圖像的分辨率和細節(jié)。假設(shè)要將一張低分辨率的老照片重建為高分辨率的清晰圖像,同時要保持圖像的自然度和真實性。以下哪種圖像超分辨率重建方法最為適合?()A.基于插值的方法B.基于重建的方法C.基于深度學習的方法D.基于學習字典的方法二、簡答題(本大題共3個小題,共15分)1、(本題5分)解釋計算機視覺中的面部識別技術(shù)。2、(本題5分)說明計算機視覺在人體姿態(tài)估計中的應(yīng)用。3、(本題5分)描述計算機視覺在金融領(lǐng)域的應(yīng)用。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)對健身操教學視頻中的動作標準度進行自動評估和指導(dǎo)。2、(本題5分)開發(fā)一個能夠識別不同種類偶蹄動物的計算機視覺系統(tǒng)。3、(本題5分)通過圖像分割技術(shù),將醫(yī)學圖像中的器官和病變組織進行精確分割。4、(本題5分)設(shè)計一個基于計算機視覺的虹膜識別系統(tǒng)。5、(本題5分)利用圖像識別技術(shù),對不同款式的服裝圖像進行分類和識別。四、分析題(本大題共3個小題,共30分)1、(本題10分)分析某食品品牌的廣告設(shè)計,討論其如何運用視覺元素傳達食
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 審計總價合同范例
- 工程合同范例單價合同
- 海鮮冷庫經(jīng)銷合同范例
- 婚后買房合同范例
- 中考數(shù)學一輪考點復(fù)習精講精練專題08 平面直角坐標系與函數(shù)概念【考點鞏固】(解析版)
- 紡織雇傭合同范例
- 固定兼職合同范例
- 手機訂貨購銷合同范例
- 企業(yè)聯(lián)盟合同范例
- 手機貨物買賣合同范例
- 安全生產(chǎn)培訓(xùn)課件
- 養(yǎng)老院安全巡查記錄制度
- 2025年建筑公司年度工作總結(jié)及2025年計劃
- 母嬰安全培訓(xùn)課件
- 2024年度三方新能源汽車充電樁運營股權(quán)轉(zhuǎn)讓協(xié)議3篇
- 《人力資源招聘體系》課件
- 模擬集成電路設(shè)計知到智慧樹章節(jié)測試課后答案2024年秋廣東工業(yè)大學
- 2024年國家工作人員學法用法考試題庫及參考答案
- 中國成人心肌炎臨床診斷與治療指南2024解讀
- 期末(試題)-2024-2025學年人教PEP版英語六年級上冊
- 創(chuàng)新創(chuàng)業(yè)創(chuàng)造:職場競爭力密鑰智慧樹知到期末考試答案章節(jié)答案2024年上海對外經(jīng)貿(mào)大學
評論
0/150
提交評論