版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
重慶市重慶市第一中學2025屆高考數(shù)學一模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,則A. B.C. D.2.已知定義在上的奇函數(shù)滿足:(其中),且在區(qū)間上是減函數(shù),令,,,則,,的大小關系(用不等號連接)為()A. B.C. D.3.設函數(shù)的定義域為,命題:,的否定是()A., B.,C., D.,4.已知為虛數(shù)單位,復數(shù)滿足,則復數(shù)在復平面內(nèi)對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.若集合,,則()A. B. C. D.6.隨著人民生活水平的提高,對城市空氣質量的關注度也逐步增大,下圖是某城市月至月的空氣質量檢測情況,圖中一、二、三、四級是空氣質量等級,一級空氣質量最好,一級和二級都是質量合格天氣,下面敘述不正確的是()A.1月至8月空氣合格天數(shù)超過天的月份有個B.第二季度與第一季度相比,空氣達標天數(shù)的比重下降了C.8月是空氣質量最好的一個月D.6月份的空氣質量最差.7.點為的三條中線的交點,且,,則的值為()A. B. C. D.8.已知是雙曲線的左、右焦點,若點關于雙曲線漸近線的對稱點滿足(為坐標原點),則雙曲線的漸近線方程為()A. B. C. D.9.復數(shù)的共軛復數(shù)為()A. B. C. D.10.在中,,分別為,的中點,為上的任一點,實數(shù),滿足,設、、、的面積分別為、、、,記(),則取到最大值時,的值為()A.-1 B.1 C. D.11.我國古代數(shù)學名著《數(shù)書九章》中有“天池盆測雨”題:在下雨時,用一個圓臺形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺體的體積公式).A.2寸 B.3寸 C.4寸 D.5寸12.設復數(shù)z=,則|z|=()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列是等比數(shù)列,,則__________.14.已知為雙曲線:的左焦點,直線經(jīng)過點,若點,關于直線對稱,則雙曲線的離心率為__________.15.將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,則函數(shù)的最大值為______.16.已知函數(shù),若關于的方程恰有四個不同的解,則實數(shù)的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,內(nèi)角,,所對的邊分別是,,,,,.(Ⅰ)求的值;(Ⅱ)求的值.18.(12分)已知函數(shù).(1)討論的單調性;(2)函數(shù),若對于,使得成立,求的取值范圍.19.(12分)設橢圓的離心率為,左、右焦點分別為,點D在橢圓C上,的周長為.(1)求橢圓C的標準方程;(2)過圓上任意一點P作圓E的切線l,若l與橢圓C交于A,B兩點,O為坐標原點,求證:為定值.20.(12分)已知函數(shù),.(1)求函數(shù)的極值;(2)當時,求證:.21.(12分)在中,角所對的邊分別為,若,,,且.(1)求角的值;(2)求的最大值.22.(10分)2019年是五四運動100周年.五四運動以來的100年,是中國青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國、青春之民族的100年.為繼承和發(fā)揚五四精神在青年節(jié)到來之際,學校組織“五四運動100周年”知識競賽,競賽的一個環(huán)節(jié)由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機抽取3道作答,現(xiàn)有甲同學參加該環(huán)節(jié)的比賽.(1)求甲同學至少抽到2道B類題的概率;(2)若甲同學答對每道A類題的概率都是,答對每道B類題的概率都是,且各題答對與否相互獨立.現(xiàn)已知甲同學恰好抽中2道A類題和1道B類題,用X表示甲同學答對題目的個數(shù),求隨機變量X的分布列和數(shù)學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
因為,,所以,,故選D.2、A【解析】因為,所以,即周期為4,因為為奇函數(shù),所以可作一個周期[-2e,2e]示意圖,如圖在(0,1)單調遞增,因為,因此,選A.點睛:函數(shù)對稱性代數(shù)表示(1)函數(shù)為奇函數(shù),函數(shù)為偶函數(shù)(定義域關于原點對稱);(2)函數(shù)關于點對稱,函數(shù)關于直線對稱,(3)函數(shù)周期為T,則3、D【解析】
根據(jù)命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因為:,是全稱命題,所以其否定是特稱命題,即,.故選:D【點睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎題.4、B【解析】
求出復數(shù),得出其對應點的坐標,確定所在象限.【詳解】由題意,對應點坐標為,在第二象限.故選:B.【點睛】本題考查復數(shù)的幾何意義,考查復數(shù)的除法運算,屬于基礎題.5、A【解析】
用轉化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點睛】本題考查了并集及其運算,分式不等式的解法,熟練掌握并集的定義是解本題的關鍵.屬于基礎題.6、D【解析】由圖表可知月空氣質量合格天氣只有天,月份的空氣質量最差.故本題答案選.7、B【解析】
可畫出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進行數(shù)量積的運算即可求出.【詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B【點睛】本題考查三角形重心的定義及性質,向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運算及向量的數(shù)量積的運算,考查運算求解能力,屬于中檔題.8、B【解析】
先利用對稱得,根據(jù)可得,由幾何性質可得,即,從而解得漸近線方程.【詳解】如圖所示:由對稱性可得:為的中點,且,所以,因為,所以,故而由幾何性質可得,即,故漸近線方程為,故選B.【點睛】本題考查了點關于直線對稱點的知識,考查了雙曲線漸近線方程,由題意得出是解題的關鍵,屬于中檔題.9、D【解析】
直接相乘,得,由共軛復數(shù)的性質即可得結果【詳解】∵∴其共軛復數(shù)為.故選:D【點睛】熟悉復數(shù)的四則運算以及共軛復數(shù)的性質.10、D【解析】
根據(jù)三角形中位線的性質,可得到的距離等于△的邊上高的一半,從而得到,由此結合基本不等式求最值,得到當取到最大值時,為的中點,再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結果.【詳解】如圖所示:因為是△的中位線,所以到的距離等于△的邊上高的一半,所以,由此可得,當且僅當時,即為的中點時,等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D【點睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應用,考查了基本不等式求最值,屬于中檔題.11、B【解析】試題分析:根據(jù)題意可得平地降雨量,故選B.考點:1.實際應用問題;2.圓臺的體積.12、D【解析】
先用復數(shù)的除法運算將復數(shù)化簡,然后用模長公式求模長.【詳解】解:z====﹣﹣,則|z|====.故選:D.【點睛】本題考查復數(shù)的基本概念和基本運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)等比數(shù)列通項公式,首先求得,然后求得.【詳解】設的公比為,由,得,故.故答案為:【點睛】本小題主要考查等比數(shù)列通項公式的基本量計算,屬于基礎題.14、【解析】
由點,關于直線對稱,得到直線的斜率,再根據(jù)直線過點,可求出直線方程,又,中點在直線上,代入直線的方程,化簡整理,即可求出結果.【詳解】因為為雙曲線:的左焦點,所以,又點,關于直線對稱,,所以可得直線的方程為,又,中點在直線上,所以,整理得,又,所以,故,解得,因為,所以.故答案為【點睛】本題主要考查雙曲線的簡單性質,先由兩點對稱,求出直線斜率,再由焦點坐標求出直線方程,根據(jù)中點在直線上,即可求出結果,屬于??碱}型.15、【解析】
由三角函數(shù)圖象相位變換后表達函數(shù)解析式,再利用三角恒等變換與輔助角公式整理的表達式,進而由三角函數(shù)值域求得最大值.【詳解】將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,則所以,當函數(shù)最大,最大值為故答案為:【點睛】本題考查表示三角函數(shù)圖象平移后圖象的解析式,還考查了利用三角恒等變換化簡函數(shù)式并求最值,屬于簡單題.16、【解析】
設,判斷為偶函數(shù),考慮x>0時,的解析式和零點個數(shù),利用導數(shù)分析函數(shù)的單調性,作函數(shù)大致圖象,即可得到的范圍.【詳解】設,則在是偶函數(shù),當時,,由得,記,,,故函數(shù)在增,而,所以在減,在增,,當時,,當時,,因此的圖象為因此實數(shù)的取值范圍是.【點睛】本題主要考查了函數(shù)的零點的個數(shù)問題,涉及構造函數(shù),函數(shù)的奇偶性,利用導數(shù)研究函數(shù)單調性,考查了數(shù)形結合思想方法,以及化簡運算能力和推理能力,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根據(jù)正弦定理先求得邊c,然后由余弦定理可求得邊b;(Ⅱ)結合二倍角公式及和差公式,即可求得本題答案.【詳解】(Ⅰ)因為,由正弦定理可得,,又,所以,所以根據(jù)余弦定理得,,解得,;(Ⅱ)因為,所以,,,則.【點睛】本題主要考查利用正余弦定理解三角形,以及利用二倍角公式及和差公式求值,屬基礎題.18、(1)當時,在上增;當時,在上減,在上增(2)【解析】
(1)求出導函數(shù),分類討論確定的正負,確定單調區(qū)間;(2)題意說明,利用導數(shù)求出的最小值,由(1)可得的最小值,從而得出結論.【詳解】解:(1)定義域為當時,即在上增;當時,即得得綜上所述,當時,在上增;當時,在上減,在上增(2)由題在上增由(1)當時,在上增,所以此時無最小值;當時,在上減,在上增,即,解得綜上【點睛】本題考查用導數(shù)求函數(shù)的單調區(qū)間,考查不等式恒成立問題,解題關鍵是掌握轉化與化歸思想,本題恒成立問題轉化為,求出兩函數(shù)的最小值后可得結論.19、(1)(2)見解析【解析】
(1)由,周長,解得,即可求得標準方程.(2)通過特殊情況的斜率不存在時,求得,再證明的斜率存在時,即可證得為定值.通過設直線的方程為與橢圓方程聯(lián)立,借助韋達定理求得,利用直線與圓相切,即,求得的關系代入,化簡即可證得即可證得結論.【詳解】(1)由題意得,周長,且.聯(lián)立解得,,所以橢圓C的標準方程為.(2)①當直線l的斜率不存在時,不妨設其方程為,則,所以,即.②當直線l的斜率存在時,設其方程為,并設,由,,,由直線l與圓E相切,得.所以.從而,即.綜合上述,得為定值.【點睛】本題考查了橢圓的標準方程,直線與橢圓的位置關系中定值問題,考查了學生計算求解能力,難度較難.20、(1)的極小值為,無極大值.(2)見解析.【解析】
(1)對求導,確定函數(shù)單調性,得到函數(shù)極值.(2)構造函數(shù),證明恒成立,得到,,得證.【詳解】(1)由題意知,,令,得,令,得.則在上單調遞減,在上單調遞增,所以的極小值為,無極大值.(2)當時,要證,即證.令,則,令,得,令,得,則在上單調遞減,在上單調遞增,所以當時,,所以,即.因為時,,所以當時,,所以當時,不等式成立.【點睛】本題考查了函數(shù)的單調性,極值,不等式的證明,構造函數(shù)是解題的關鍵.21、(1);(2).【解析】
(1)由正弦定理可得,再用余弦定理即可得到角C;(2),再利用求正弦型函數(shù)值域的方法即可得到答案.【詳解】(1)因為,所以.在中,由正弦定理得,所以,即.在中,由余弦定理得,又因為,所以.(2)由(1)得,在中,,所以.因為,所以,所以當,即時,有最大值1,所以的最大值為.【點睛】本題考查正余弦定理解三角形,涉及到兩角差的正弦公式、輔助角公式、向量
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年綠色能源項目合伙人共同投資合作協(xié)議范本3篇
- 多元化資產(chǎn)管理合同
- 辦公室空間利用合同
- 網(wǎng)絡文化產(chǎn)品交易服務平臺協(xié)議
- 常用購銷合同
- 軟件知識產(chǎn)權保護協(xié)議
- 2025版醫(yī)療健康企業(yè)100%股權出售及合作開發(fā)合同3篇
- 消防工程施工簡單協(xié)議書
- 少兒百科知識故事征文
- 水穩(wěn)料采購合同協(xié)議書
- 8.制作豆腐 教案 2023-2024學年江蘇鳳凰出版社九年級勞動技術
- 《聯(lián)合國教科文:學生人工智能能力框架》-中文版
- 合同債務人變更協(xié)議書模板
- 高中生物必修一知識點總結(必修1)
- 《風力發(fā)電技術》課件-第三章 機組運行與維護
- 2024年高中生物新教材同步選擇性必修第三冊學習筆記第4章 本章知識網(wǎng)絡
- 物料報廢回收合同范本
- 西班牙可再生能源行業(yè)市場前景及投資研究報告-培訓課件外文版2024.6光伏儲能風電
- 科研機構成果轉化困境與對策
- 選礦廠建設課件
- DB32T4065-2021建筑幕墻工程技術標準
評論
0/150
提交評論