版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
南寧二中、柳州高中2025屆高考數(shù)學(xué)三模試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則的大小關(guān)系為A. B. C. D.2.已知正方體的棱長(zhǎng)為2,點(diǎn)在線段上,且,平面經(jīng)過點(diǎn),則正方體被平面截得的截面面積為()A. B. C. D.3.設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關(guān)關(guān)系B.回歸直線過樣本點(diǎn)的中心(,)C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kgD.若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg4.若雙曲線:的一條漸近線方程為,則()A. B. C. D.5.已知,,,則,,的大小關(guān)系為()A. B. C. D.6.已知命題:R,;命題:R,,則下列命題中為真命題的是()A. B. C. D.7.設(shè),,分別是中,,所對(duì)邊的邊長(zhǎng),則直線與的位置關(guān)系是()A.平行 B.重合C.垂直 D.相交但不垂直8.上世紀(jì)末河南出土的以鶴的尺骨(翅骨)制成的“骨笛”(圖1),充分展示了我國(guó)古代高超的音律藝術(shù)及先進(jìn)的數(shù)學(xué)水平,也印證了我國(guó)古代音律與歷法的密切聯(lián)系.圖2為骨笛測(cè)量“春(秋)分”,“夏(冬)至”的示意圖,圖3是某骨笛的部分測(cè)量數(shù)據(jù)(骨笛的彎曲忽略不計(jì)),夏至(或冬至)日光(當(dāng)日正午太陽光線)與春秋分日光(當(dāng)日正午太陽光線)的夾角等于黃赤交角.由歷法理論知,黃赤交角近1萬年持續(xù)減小,其正切值及對(duì)應(yīng)的年代如下表:黃赤交角正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根據(jù)以上信息,通過計(jì)算黃赤交角,可估計(jì)該骨笛的大致年代是()A.公元前2000年到公元元年 B.公元前4000年到公元前2000年C.公元前6000年到公元前4000年 D.早于公元前6000年9.設(shè)P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q10.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.11.已知向量,,則與的夾角為()A. B. C. D.12.某幾何體的三視圖如右圖所示,則該幾何體的外接球表面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知x,y>0,且,則x+y的最小值為_____.14.平行四邊形中,,為邊上一點(diǎn)(不與重合),將平行四邊形沿折起,使五點(diǎn)均在一個(gè)球面上,當(dāng)四棱錐體積最大時(shí),球的表面積為________.15.已知集合,則____________.16.若,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,己知圓和雙曲線,記與軸正半軸、軸負(fù)半軸的公共點(diǎn)分別為、,又記與在第一、第四象限的公共點(diǎn)分別為、.(1)若,且恰為的左焦點(diǎn),求的兩條漸近線的方程;(2)若,且,求實(shí)數(shù)的值;(3)若恰為的左焦點(diǎn),求證:在軸上不存在這樣的點(diǎn),使得.18.(12分)已知直線是曲線的切線.(1)求函數(shù)的解析式,(2)若,證明:對(duì)于任意,有且僅有一個(gè)零點(diǎn).19.(12分)為了解網(wǎng)絡(luò)外賣的發(fā)展情況,某調(diào)查機(jī)構(gòu)從全國(guó)各城市中抽取了100個(gè)相同等級(jí)地城市,分別調(diào)查了甲乙兩家網(wǎng)絡(luò)外賣平臺(tái)(以下簡(jiǎn)稱外賣甲、外賣乙)在今年3月的訂單情況,得到外賣甲該月訂單的頻率分布直方圖,外賣乙該月訂單的頻數(shù)分布表,如下圖表所示.訂單:(單位:萬件)頻數(shù)1223訂單:(單位:萬件)頻數(shù)402020102(1)現(xiàn)規(guī)定,月訂單不低于13萬件的城市為“業(yè)績(jī)突出城市”,填寫下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為“是否為業(yè)績(jī)突出城市”與“選擇網(wǎng)絡(luò)外賣平臺(tái)”有關(guān).業(yè)績(jī)突出城市業(yè)績(jī)不突出城市總計(jì)外賣甲外賣乙總計(jì)(2)由頻率分布直方圖可以認(rèn)為,外賣甲今年3月在全國(guó)各城市的訂單數(shù)(單位:萬件)近似地服從正態(tài)分布,其中近似為樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),的值已求出,約為3.64,現(xiàn)把頻率視為概率,解決下列問題:①從全國(guó)各城市中隨機(jī)抽取6個(gè)城市,記為外賣甲在今年3月訂單數(shù)位于區(qū)間的城市個(gè)數(shù),求的數(shù)學(xué)期望;②外賣甲決定在今年3月訂單數(shù)低于7萬件的城市開展“訂外賣,搶紅包”的營(yíng)銷活動(dòng)來提升業(yè)績(jī),據(jù)統(tǒng)計(jì),開展此活動(dòng)后城市每月外賣訂單數(shù)將提高到平均每月9萬件的水平,現(xiàn)從全國(guó)各月訂單數(shù)不超過7萬件的城市中采用分層抽樣的方法選出100個(gè)城市不開展?fàn)I銷活動(dòng),若每按一件外賣訂單平均可獲純利潤(rùn)5元,但每件外賣平均需送出紅包2元,則外賣甲在這100個(gè)城市中開展?fàn)I銷活動(dòng)將比不開展?fàn)I銷活動(dòng)每月多盈利多少萬元?附:①參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828②若,則,.20.(12分)已知橢圓:(),四點(diǎn),,,中恰有三點(diǎn)在橢圓上.(1)求橢圓的方程;(2)設(shè)橢圓的左右頂點(diǎn)分別為.是橢圓上異于的動(dòng)點(diǎn),求的正切的最大值.21.(12分)在中,為邊上一點(diǎn),,.(1)求;(2)若,,求.22.(10分)已知點(diǎn)為圓:上的動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),過作直線的垂線(當(dāng)、重合時(shí),直線約定為軸),垂足為,以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求點(diǎn)的軌跡的極坐標(biāo)方程;(2)直線的極坐標(biāo)方程為,連接并延長(zhǎng)交于,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
分析:由題意結(jié)合對(duì)數(shù)的性質(zhì),對(duì)數(shù)函數(shù)的單調(diào)性和指數(shù)的性質(zhì)整理計(jì)算即可確定a,b,c的大小關(guān)系.詳解:由題意可知:,即,,即,,即,綜上可得:.本題選擇D選項(xiàng).點(diǎn)睛:對(duì)于指數(shù)冪的大小的比較,我們通常都是運(yùn)用指數(shù)函數(shù)的單調(diào)性,但很多時(shí)候,因冪的底數(shù)或指數(shù)不相同,不能直接利用函數(shù)的單調(diào)性進(jìn)行比較.這就必須掌握一些特殊方法.在進(jìn)行指數(shù)冪的大小比較時(shí),若底數(shù)不同,則首先考慮將其轉(zhuǎn)化成同底數(shù),然后再根據(jù)指數(shù)函數(shù)的單調(diào)性進(jìn)行判斷.對(duì)于不同底而同指數(shù)的指數(shù)冪的大小的比較,利用圖象法求解,既快捷,又準(zhǔn)確.2、B【解析】
先根據(jù)平面的基本性質(zhì)確定平面,然后利用面面平行的性質(zhì)定理,得到截面的形狀再求解.【詳解】如圖所示:確定一個(gè)平面,因?yàn)槠矫嫫矫?,所以,同理,所以四邊形是平行四邊?即正方體被平面截的截面.因?yàn)?,所以,即所以由余弦定理得:所以所以四邊形故選:B【點(diǎn)睛】本題主要考查平面的基本性質(zhì),面面平行的性質(zhì)定理及截面面積的求法,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.3、D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關(guān)關(guān)系,A正確;回歸直線過樣本點(diǎn)的中心(),B正確;該大學(xué)某女生身高增加1cm,預(yù)測(cè)其體重約增加0.85kg,C正確;該大學(xué)某女生身高為170cm,預(yù)測(cè)其體重約為0.85×170﹣85.71=58.79kg,D錯(cuò)誤.故選D.4、A【解析】
根據(jù)雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點(diǎn)睛】本小題主要考查雙曲線的漸近線,屬于基礎(chǔ)題.5、D【解析】
構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,由此判斷出的大小關(guān)系.【詳解】依題意,得,,.令,所以.所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.所以,且,即,所以.故選:D.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查對(duì)數(shù)式比較大小,屬于中檔題.6、B【解析】
根據(jù),可知命題的真假,然后對(duì)取值,可得命題的真假,最后根據(jù)真值表,可得結(jié)果.【詳解】對(duì)命題:可知,所以R,故命題為假命題命題:取,可知所以R,故命題為真命題所以為真命題故選:B【點(diǎn)睛】本題主要考查對(duì)命題真假的判斷以及真值表的應(yīng)用,識(shí)記真值表,屬基礎(chǔ)題.7、C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點(diǎn):直線與直線的位置關(guān)系8、D【解析】
先理解題意,然后根據(jù)題意建立平面幾何圖形,在利用三角函數(shù)的知識(shí)計(jì)算出冬至日光與春秋分日光的夾角,即黃赤交角,即可得到正確選項(xiàng).【詳解】解:由題意,可設(shè)冬至日光與垂直線夾角為,春秋分日光與垂直線夾角為,則即為冬至日光與春秋分日光的夾角,即黃赤交角,將圖3近似畫出如下平面幾何圖形:則,,.,估計(jì)該骨笛的大致年代早于公元前6000年.故選:.【點(diǎn)睛】本題考查利用三角函數(shù)解決實(shí)際問題的能力,運(yùn)用了兩角和與差的正切公式,考查了轉(zhuǎn)化思想,數(shù)學(xué)建模思想,以及數(shù)學(xué)運(yùn)算能力,屬中檔題.9、C【解析】
解:因?yàn)镻={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C10、A【解析】
由題意求得c與的值,結(jié)合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單性質(zhì),屬于基礎(chǔ)題.11、B【解析】
由已知向量的坐標(biāo),利用平面向量的夾角公式,直接可求出結(jié)果.【詳解】解:由題意得,設(shè)與的夾角為,,由于向量夾角范圍為:,∴.故選:B.【點(diǎn)睛】本題考查利用平面向量的數(shù)量積求兩向量的夾角,注意向量夾角的范圍.12、A【解析】
由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,結(jié)合直觀圖判斷外接球球心的位置,求出半徑,代入求得表面積公式計(jì)算.【詳解】由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,高為2,底面為等腰直角三角形,斜邊長(zhǎng)為,如圖:的外接圓的圓心為斜邊的中點(diǎn),,且平面,,的中點(diǎn)為外接球的球心,半徑,外接球表面積.故選:A【點(diǎn)睛】本題考查了由三視圖求幾何體的外接球的表面積,根據(jù)三視圖判斷幾何體的結(jié)構(gòu)特征,利用幾何體的結(jié)構(gòu)特征與數(shù)據(jù)求得外接球的半徑是解答本題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
處理變形x+y=x()+y結(jié)合均值不等式求解最值.【詳解】x,y>0,且,則x+y=x()+y1,當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí)x=4,y=2,取得最小值1.故答案為:1【點(diǎn)睛】此題考查利用均值不等式求解最值,關(guān)鍵在于熟練掌握均值不等式的適用條件,注意考慮等號(hào)成立的條件.14、【解析】
依題意可得、、、四點(diǎn)共圓,即可得到,從而得到三角形為正三角形,利用余弦定理可得,且,要使四棱錐體積最大,當(dāng)且僅當(dāng)面面時(shí)體積取得最大值,利用正弦定理求出的外接圓的半徑,再又可證面,則外接球的半徑,即可求出球的表面積;【詳解】解:依題意可得、、、四點(diǎn)共圓,所以因?yàn)?,所以,,所以三角形為正三角形,則,,利用余弦定理得即,解得,則所以,當(dāng)面面時(shí),取得最大,所以的外接圓的半徑,又面面,,且面面,面所以面,所以外接球的半徑所以故答案為:【點(diǎn)睛】本題考查多面體的外接球的相關(guān)計(jì)算,正弦定理、余弦定理的應(yīng)用,屬于中檔題.15、【解析】
根據(jù)并集的定義計(jì)算即可.【詳解】由集合的并集,知.故答案為:【點(diǎn)睛】本題考查集合的并集運(yùn)算,屬于容易題.16、【解析】
因?yàn)?,所?因?yàn)?,所以,又,所以,所?.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(2)見解析.【解析】
(1)由圓的方程求出點(diǎn)坐標(biāo),得雙曲線的,再計(jì)算出后可得漸近線方程;(2)設(shè),由圓方程與雙曲線方程聯(lián)立,消去后整理,可得,,由先求出,回代后求得坐標(biāo),計(jì)算;(3)由已知得,設(shè),由圓方程與雙曲線方程聯(lián)立,消去后整理,可解得,,求出,從而可得,由,可知滿足要求的點(diǎn)不存在.【詳解】(1)由題意圓方程為,令得,∴,即,∴,,∴漸近線方程為.(2)由(1)圓方程為,,設(shè),由得,(*),,,,所以,即,解得,方程(*)為,即,,代入雙曲線方程得,∵在第一、四象限,∴,,∴.(3)由題意,,,,,設(shè)由得:,,由得,解得,,,所以,,,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí),等號(hào)成立,∴軸上不存在點(diǎn),使得.【點(diǎn)睛】本題考查求漸近線方程,考查圓與雙曲線相交問題.考查向量的加法運(yùn)算,本題對(duì)學(xué)生的運(yùn)算求解能力要求較高,解題時(shí)都是直接求出交點(diǎn)坐標(biāo).難度較大,屬于困難題.18、(1)(2)證明見解析【解析】
(1)對(duì)函數(shù)求導(dǎo),并設(shè)切點(diǎn),利用點(diǎn)既在曲線上、又在切線上,列出方程組,解得,即可得答案;(2)當(dāng)x充分小時(shí),當(dāng)x充分大時(shí),可得至少有一個(gè)零點(diǎn).再證明零點(diǎn)的唯一性,即對(duì)函數(shù)求導(dǎo)得,對(duì)分和兩種情況討論,即可得答案.【詳解】(1)根據(jù)題意,,設(shè)直線與曲線相切于點(diǎn).根據(jù)題意,可得,解之得,所以.(2)由(1)可知,則當(dāng)x充分小時(shí),當(dāng)x充分大時(shí),∴至少有一個(gè)零點(diǎn).∵,①若,則,在上單調(diào)遞增,∴有唯一零點(diǎn).②若令,得有兩個(gè)極值點(diǎn),∵,∴,∴.∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.∴極大值為.,又,∴在(0,16)上單調(diào)遞增,∴,∴有唯一零點(diǎn).綜上可知,對(duì)于任意,有且僅有一個(gè)零點(diǎn).【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的運(yùn)用、利用導(dǎo)數(shù)證明函數(shù)的零點(diǎn)個(gè)數(shù),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意零點(diǎn)存在定理的運(yùn)用.19、(1)見解析,有90%的把握認(rèn)為“是否為業(yè)績(jī)突出城市”與“選擇網(wǎng)絡(luò)外賣平臺(tái)”有關(guān).(2)①4.911②100萬元.【解析】
(1)根據(jù)頻率分布直方圖與頻率分布表,易得兩個(gè)外賣平臺(tái)中月訂單不低于13萬件的城市數(shù)量,即可完善列聯(lián)表.通過計(jì)算的觀測(cè)值,即可結(jié)合臨界值作出判斷.(2)①先根據(jù)所給數(shù)據(jù)求得樣本平均值,根據(jù)所給今年3月訂單數(shù)區(qū)間,并由及求得,.結(jié)合正態(tài)分布曲線性質(zhì)可求得,再由二項(xiàng)分布的數(shù)學(xué)期望求法求解.②訂單數(shù)低于7萬件的城市有和兩組,根據(jù)分層抽樣的性質(zhì)可確定各組抽取樣本數(shù).分別計(jì)算出開展?fàn)I銷活動(dòng)與不開展?fàn)I銷活動(dòng)的利潤(rùn),比較即可得解.【詳解】(1)對(duì)于外賣甲:月訂單不低于13萬件的城市數(shù)量為,對(duì)于外賣乙:月訂單不低于13萬件的城市數(shù)量為.由以上數(shù)據(jù)完善列聯(lián)表如下圖,業(yè)績(jī)突出城市業(yè)績(jī)不突出城市總計(jì)外賣甲4060100外賣乙5248100總計(jì)92108200且的觀測(cè)值為,∴有90%的把握認(rèn)為“是否為業(yè)績(jī)突出城市”與“選擇網(wǎng)絡(luò)外賣平臺(tái)”有關(guān).(2)①樣本平均數(shù),故==,,的數(shù)學(xué)期望,②由分層抽樣知,則100個(gè)城市中每月訂單數(shù)在區(qū)間內(nèi)的有(個(gè)),每月訂單數(shù)在區(qū)間內(nèi)的有(個(gè)),若不開展?fàn)I銷活動(dòng),則一個(gè)月的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)資健康管理辦法
- 企事業(yè)單位綠化養(yǎng)護(hù)項(xiàng)目招標(biāo)
- 通信工程商品混凝土施工合同
- 兒童節(jié)目制片合作協(xié)議
- 珠寶共享租賃協(xié)議-時(shí)尚活動(dòng)
- 短期技術(shù)研發(fā)聘用合同
- 網(wǎng)絡(luò)安全服務(wù)招標(biāo)申請(qǐng)
- 汽車制造業(yè)裝卸規(guī)范
- 2025廚師承包餐廳合同
- 市政工程人員文明施工承諾書
- 特種設(shè)備(承壓類)生產(chǎn)單位安全風(fēng)險(xiǎn)管控(日管控、周排查、月調(diào)度)清單
- 醫(yī)保藥品編碼數(shù)據(jù)庫Excel表2023版
- 混凝土配合比全自動(dòng)計(jì)算書
- 網(wǎng)絡(luò)傳播法規(guī)(自考14339)復(fù)習(xí)必備題庫(含答案)
- 王守仁《英國(guó)文學(xué)選讀》譯文
- 新課標(biāo)人教版五年級(jí)數(shù)學(xué)上冊(cè)總復(fù)習(xí)(全冊(cè))
- 修心三不:不生氣不計(jì)較不抱怨
- 學(xué)生奶營(yíng)銷策劃方案2
- 2023年廣州番禺區(qū)小升初六年級(jí)英語期末試卷及答案(含聽力原文)
- 土木工程管理與工程造價(jià)的有效控制探析獲獎(jiǎng)科研報(bào)告
- 基層版創(chuàng)傷中心建設(shè)指南(試行)
評(píng)論
0/150
提交評(píng)論