吉林省長(zhǎng)春二中2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第1頁
吉林省長(zhǎng)春二中2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第2頁
吉林省長(zhǎng)春二中2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第3頁
吉林省長(zhǎng)春二中2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第4頁
吉林省長(zhǎng)春二中2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

吉林省長(zhǎng)春二中2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某幾何體的三視圖如圖所示,其俯視圖是由一個(gè)半圓與其直徑組成的圖形,則此幾何體的體積是()A. B. C. D.2.已知,則,不可能滿足的關(guān)系是()A. B. C. D.3.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件4.年某省將實(shí)行“”的新高考模式,即語文、數(shù)學(xué)、英語三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒有偏好,且不受其他因素影響,則甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率為A. B. C. D.5.如圖,四邊形為正方形,延長(zhǎng)至,使得,點(diǎn)在線段上運(yùn)動(dòng).設(shè),則的取值范圍是()A. B. C. D.6.設(shè)函數(shù),則函數(shù)的圖像可能為()A. B. C. D.7.已知數(shù)列是公差為的等差數(shù)列,且成等比數(shù)列,則()A.4 B.3 C.2 D.18.如圖,圓的半徑為,,是圓上的定點(diǎn),,是圓上的動(dòng)點(diǎn),點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,角的始邊為射線,終邊為射線,將表示為的函數(shù),則在上的圖像大致為()A. B. C. D.9.下列圖形中,不是三棱柱展開圖的是()A. B. C. D.10.若,,,點(diǎn)C在AB上,且,設(shè),則的值為()A. B. C. D.11.在“一帶一路”知識(shí)測(cè)驗(yàn)后,甲、乙、丙三人對(duì)成績(jī)進(jìn)行預(yù)測(cè).甲:我的成績(jī)比乙高.乙:丙的成績(jī)比我和甲的都高.丙:我的成績(jī)比乙高.成績(jī)公布后,三人成績(jī)互不相同且只有一個(gè)人預(yù)測(cè)正確,那么三人按成績(jī)由高到低的次序?yàn)锳.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙12.設(shè)分別是雙曲線的左右焦點(diǎn)若雙曲線上存在點(diǎn),使,且,則雙曲線的離心率為()A. B.2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,且,則實(shí)數(shù)m的值是________.14.在的展開式中,的系數(shù)等于__.15.已知集合,,則__________.16.某大學(xué)、、、四個(gè)不同的專業(yè)人數(shù)占本???cè)藬?shù)的比例依次為、、、,現(xiàn)欲采用分層抽樣的方法從這四個(gè)專業(yè)的總?cè)藬?shù)中抽取人調(diào)查畢業(yè)后的就業(yè)情況,則專業(yè)應(yīng)抽取_________人.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是遞增的等比數(shù)列,,且、、成等差數(shù)列.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),,求數(shù)列的前項(xiàng)和.18.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),將曲線經(jīng)過伸縮變換后得到曲線.在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;(2)已知點(diǎn)是曲線上的任意一點(diǎn),又直線上有兩點(diǎn)和,且,又點(diǎn)的極角為,點(diǎn)的極角為銳角.求:①點(diǎn)的極角;②面積的取值范圍.19.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系.已知點(diǎn)的直角坐標(biāo)為,過的直線與曲線相交于,兩點(diǎn).(1)若的斜率為2,求的極坐標(biāo)方程和曲線的普通方程;(2)求的值.20.(12分)已知函數(shù),當(dāng)時(shí),有極大值3;(1)求,的值;(2)求函數(shù)的極小值及單調(diào)區(qū)間.21.(12分)在平面直角坐標(biāo)系中,橢圓:的右焦點(diǎn)為(,為常數(shù)),離心率等于0.8,過焦點(diǎn)、傾斜角為的直線交橢圓于、兩點(diǎn).⑴求橢圓的標(biāo)準(zhǔn)方程;⑵若時(shí),,求實(shí)數(shù);⑶試問的值是否與的大小無關(guān),并證明你的結(jié)論.22.(10分)已知各項(xiàng)均不相等的等差數(shù)列的前項(xiàng)和為,且成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由三視圖可知,該幾何體是下部是半徑為2,高為1的圓柱的一半,上部為底面半徑為2,高為2的圓錐的一半,所以,半圓柱的體積為,上部半圓錐的體積為,所以該幾何體的體積為,故應(yīng)選.2、C【解析】

根據(jù)即可得出,,根據(jù),,即可判斷出結(jié)果.【詳解】∵;∴,;∴,,故正確;,故C錯(cuò)誤;∵,故D正確故C.【點(diǎn)睛】本題主要考查指數(shù)式和對(duì)數(shù)式的互化,對(duì)數(shù)的運(yùn)算,以及基本不等式:和不等式的應(yīng)用,屬于中檔題3、C【解析】

先根據(jù)直線與直線平行確定的值,進(jìn)而即可確定結(jié)果.【詳解】因?yàn)橹本€與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【點(diǎn)睛】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎(chǔ)題型.4、B【解析】

甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時(shí)選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計(jì)算公式,可得甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率,故選B.5、C【解析】

以為坐標(biāo)原點(diǎn),以分別為x軸,y軸建立直角坐標(biāo)系,利用向量的坐標(biāo)運(yùn)算計(jì)算即可解決.【詳解】以為坐標(biāo)原點(diǎn)建立如圖所示的直角坐標(biāo)系,不妨設(shè)正方形的邊長(zhǎng)為1,則,,設(shè),則,所以,且,故.故選:C.【點(diǎn)睛】本題考查利用向量的坐標(biāo)運(yùn)算求變量的取值范圍,考查學(xué)生的基本計(jì)算能力,本題的關(guān)鍵是建立適當(dāng)?shù)闹苯亲鴺?biāo)系,是一道基礎(chǔ)題.6、B【解析】

根據(jù)函數(shù)為偶函數(shù)排除,再計(jì)算排除得到答案.【詳解】定義域?yàn)椋?,函?shù)為偶函數(shù),排除,排除故選【點(diǎn)睛】本題考查了函數(shù)圖像,通過函數(shù)的單調(diào)性,奇偶性,特殊值排除選項(xiàng)是常用的技巧.7、A【解析】

根據(jù)等差數(shù)列和等比數(shù)列公式直接計(jì)算得到答案.【詳解】由成等比數(shù)列得,即,已知,解得.故選:.【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列的基本量的計(jì)算,意在考查學(xué)生的計(jì)算能力.8、B【解析】

根據(jù)圖象分析變化過程中在關(guān)鍵位置及部分區(qū)域,即可排除錯(cuò)誤選項(xiàng),得到函數(shù)圖象,即可求解.【詳解】由題意,當(dāng)時(shí),P與A重合,則與B重合,所以,故排除C,D選項(xiàng);當(dāng)時(shí),,由圖象可知選B.故選:B【點(diǎn)睛】本題主要考查三角函數(shù)的圖像與性質(zhì),正確表示函數(shù)的表達(dá)式是解題的關(guān)鍵,屬于中檔題.9、C【解析】

根據(jù)三棱柱的展開圖的可能情況選出選項(xiàng).【詳解】由圖可知,ABD選項(xiàng)可以圍成三棱柱,C選項(xiàng)不是三棱柱展開圖.故選:C【點(diǎn)睛】本小題主要考查三棱柱展開圖的判斷,屬于基礎(chǔ)題.10、B【解析】

利用向量的數(shù)量積運(yùn)算即可算出.【詳解】解:,,又在上,故選:【點(diǎn)睛】本題主要考查了向量的基本運(yùn)算的應(yīng)用,向量的基本定理的應(yīng)用及向量共線定理等知識(shí)的綜合應(yīng)用.11、A【解析】

利用逐一驗(yàn)證的方法進(jìn)行求解.【詳解】若甲預(yù)測(cè)正確,則乙、丙預(yù)測(cè)錯(cuò)誤,則甲比乙成績(jī)高,丙比乙成績(jī)低,故3人成績(jī)由高到低依次為甲,乙,丙;若乙預(yù)測(cè)正確,則丙預(yù)測(cè)也正確,不符合題意;若丙預(yù)測(cè)正確,則甲必預(yù)測(cè)錯(cuò)誤,丙比乙的成績(jī)高,乙比甲成績(jī)高,即丙比甲,乙成績(jī)都高,即乙預(yù)測(cè)正確,不符合題意,故選A.【點(diǎn)睛】本題將數(shù)學(xué)知識(shí)與時(shí)政結(jié)合,主要考查推理判斷能力.題目有一定難度,注重了基礎(chǔ)知識(shí)、邏輯推理能力的考查.12、A【解析】

由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡(jiǎn)得.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線定義用表示出到兩焦點(diǎn)的距離,再由余弦定理得出的齊次式.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

根據(jù)即可得出,從而求出m的值.【詳解】解:∵;∴;∴m=1.故答案為:1.【點(diǎn)睛】本題考查向量垂直的充要條件,向量數(shù)量積的坐標(biāo)運(yùn)算.14、7【解析】

由題,得,令,即可得到本題答案.【詳解】由題,得,令,得x的系數(shù).故答案為:7【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,屬基礎(chǔ)題.15、【解析】

解一元二次不等式化簡(jiǎn)集合,再進(jìn)行集合的交運(yùn)算,即可得到答案.【詳解】,,.故答案為:.【點(diǎn)睛】本題考查一元二次不等式的求解、集合的交運(yùn)算,考查運(yùn)算求解能力,屬于基礎(chǔ)題.16、【解析】

求出專業(yè)人數(shù)在、、、四個(gè)專業(yè)總?cè)藬?shù)的比例后可得.【詳解】由題意、、、四個(gè)不同的專業(yè)人數(shù)的比例為,故專業(yè)應(yīng)抽取的人數(shù)為.故答案為:1.【點(diǎn)睛】本題考查分層抽樣,根據(jù)分層抽樣的定義,在各層抽取樣本數(shù)量是按比例抽取的.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)設(shè)等比數(shù)列的公比為,根據(jù)題中條件求出的值,結(jié)合等比數(shù)列的通項(xiàng)公式可得出數(shù)列的通項(xiàng)公式;(Ⅱ)求得,然后利用裂項(xiàng)相消法可求得.【詳解】(Ⅰ)設(shè)數(shù)列的公比為,由題意及,知.、、成等差數(shù)列成等差數(shù)列,,,即,解得或(舍去),.數(shù)列的通項(xiàng)公式為;(Ⅱ),.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)的求解,同時(shí)也考查了裂項(xiàng)求和法,考查計(jì)算能力,屬于基礎(chǔ)題.18、(1)曲線為圓心在原點(diǎn),半徑為2的圓.的極坐標(biāo)方程為(2)①②【解析】

(1)求得曲線伸縮變換后所得的參數(shù)方程,消參后求得的普通方程,判斷出對(duì)應(yīng)的曲線,并將的普通方程轉(zhuǎn)化為極坐標(biāo)方程.(2)①將的極角代入直線的極坐標(biāo)方程,由此求得點(diǎn)的極徑,判斷出為等腰三角形,求得直線的普通方程,由此求得,進(jìn)而求得,從而求得點(diǎn)的極角.②解法一:利用曲線的參數(shù)方程,求得曲線上的點(diǎn)到直線的距離的表達(dá)式,結(jié)合三角函數(shù)的知識(shí)求得的最小值和最大值,由此求得面積的取值范圍.解法二:根據(jù)曲線表示的曲線,利用圓的幾何性質(zhì)求得圓上的點(diǎn)到直線的距離的最大值和最小值,進(jìn)而求得面積的取值范圍.【詳解】(1)因?yàn)榍€的參數(shù)方程為(為參數(shù)),因?yàn)閯t曲線的參數(shù)方程所以的普通方程為.所以曲線為圓心在原點(diǎn),半徑為2的圓.所以的極坐標(biāo)方程為,即.(2)①點(diǎn)的極角為,代入直線的極坐標(biāo)方程得點(diǎn)極徑為,且,所以為等腰三角形,又直線的普通方程為,又點(diǎn)的極角為銳角,所以,所以,所以點(diǎn)的極角為.②解法1:直線的普通方程為.曲線上的點(diǎn)到直線的距離.當(dāng),即()時(shí),取到最小值為.當(dāng),即()時(shí),取到最大值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.解法2:直線的普通方程為.因?yàn)閳A的半徑為2,且圓心到直線的距離,因?yàn)椋詧A與直線相離.所以圓上的點(diǎn)到直線的距離最大值為,最小值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.【點(diǎn)睛】本小題考查坐標(biāo)變換,極徑與極角;直線,圓的極坐標(biāo)方程,圓的參數(shù)方程,直線的極坐標(biāo)方程與普通方程,點(diǎn)到直線的距離等.考查數(shù)學(xué)運(yùn)算能力,包括運(yùn)算原理的理解與應(yīng)用、運(yùn)算方法的選擇與優(yōu)化、運(yùn)算結(jié)果的檢驗(yàn)與改進(jìn)等.也兼考了數(shù)學(xué)抽象素養(yǎng)、邏輯推理、數(shù)學(xué)運(yùn)算、直觀想象等核心素養(yǎng).19、(1):,:;(2)【解析】

(1)根據(jù)點(diǎn)斜式寫出直線的直角坐標(biāo)方程,并轉(zhuǎn)化為極坐標(biāo)方程,利用,將曲線的參數(shù)方程轉(zhuǎn)化為普通方程.(2)將直線的參數(shù)方程代入曲線的普通方程,結(jié)合直線參數(shù)的幾何意義以及根與系數(shù)關(guān)系,求得的值.【詳解】(1)的直角坐標(biāo)方程為,即,則的極坐標(biāo)方程為.曲線的普通方程為.(2)直線的參數(shù)方程為(為參數(shù),為的傾斜角),代入曲線的普通方程,得.設(shè),對(duì)應(yīng)的參數(shù)分別為,,所以,在的兩側(cè).則.【點(diǎn)睛】本小題主要考查直角坐標(biāo)化為極坐標(biāo),考查參數(shù)方程化為普通方程,考查直線參數(shù)方程,考查直線參數(shù)的幾何意義,屬于中檔題.20、(1);(2)極小值為,遞減區(qū)間為:,遞增區(qū)間為.【解析】

(1)由題意得到關(guān)于實(shí)數(shù)的方程組,求解方程組,即可求得的值;(2)結(jié)合(1)中的值得出函數(shù)的解析式,即可利用導(dǎo)數(shù)求得函數(shù)的單調(diào)區(qū)間和極小值.【詳解】(1)由題意,函數(shù),則,由當(dāng)時(shí),有極大值,則,解得.(2)由(1)可得函數(shù)的解析式為,則,令,即,解得,令,即,解得或,所以函數(shù)的單調(diào)減區(qū)間為,遞增區(qū)間為,當(dāng)時(shí),函數(shù)取得極小值,極小值為.當(dāng)時(shí),有極大值3.【點(diǎn)睛】本題主要考查了函數(shù)的極值的概念,以及利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間和極值,其中解答中熟記函數(shù)的極值的概念,以及函數(shù)的導(dǎo)數(shù)與原函數(shù)的關(guān)系,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.21、(1)(2)(3)為定值【解析】試題分析:(1)利用待定系數(shù)法可得,橢圓方程為;(2)我們要知道=的條件應(yīng)用,在于直線交橢圓兩交點(diǎn)M,N的橫坐標(biāo)為,這樣代入橢圓方程,容易得到,從而解得;(3)需討論斜率是否存在.一方面斜率不存在即=時(shí),由(2)得;另一方面,當(dāng)斜率存在即時(shí),可設(shè)直線的斜率為,得直線MN:,聯(lián)立直線與橢圓方程,利用韋達(dá)定理和焦半徑公式,就能得到,所以為定值,與直線的傾斜角的大小無關(guān)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論