版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆江蘇鹽城市時楊中學(xué)高三二診模擬考試數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,則()A. B. C. D.2.已知公差不為0的等差數(shù)列的前項(xiàng)的和為,,且成等比數(shù)列,則()A.56 B.72 C.88 D.403.設(shè)是虛數(shù)單位,復(fù)數(shù)()A. B. C. D.4.已知函數(shù),則()A.2 B.3 C.4 D.55.已知向量,,,若,則()A. B. C. D.6.已知復(fù)數(shù)滿足,則的最大值為()A. B. C. D.67.已知命題p:若,,則;命題q:,使得”,則以下命題為真命題的是()A. B. C. D.8.從拋物線上一點(diǎn)(點(diǎn)在軸上方)引拋物線準(zhǔn)線的垂線,垂足為,且,設(shè)拋物線的焦點(diǎn)為,則直線的斜率為()A. B. C. D.9.為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計學(xué)家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時,表示收入完全平等.勞倫茨曲線為折線時,表示收入完全不平等.記區(qū)域?yàn)椴黄降葏^(qū)域,表示其面積,為的面積,將稱為基尼系數(shù).對于下列說法:①越小,則國民分配越公平;②設(shè)勞倫茨曲線對應(yīng)的函數(shù)為,則對,均有;③若某國家某年的勞倫茨曲線近似為,則;④若某國家某年的勞倫茨曲線近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④10.如圖,圓是邊長為的等邊三角形的內(nèi)切圓,其與邊相切于點(diǎn),點(diǎn)為圓上任意一點(diǎn),,則的最大值為()A. B. C.2 D.11.下圖所示函數(shù)圖象經(jīng)過何種變換可以得到的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位12.?dāng)?shù)列滿足:,則數(shù)列前項(xiàng)的和為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.對于任意的正數(shù),不等式恒成立,則的最大值為_____.14.已知復(fù)數(shù),其中是虛數(shù)單位.若的實(shí)部與虛部相等,則實(shí)數(shù)的值為__________.15.若為假,則實(shí)數(shù)的取值范圍為__________.16.設(shè)實(shí)數(shù),若函數(shù)的最大值為,則實(shí)數(shù)的最大值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,點(diǎn)是直線上的動點(diǎn),為定點(diǎn),點(diǎn)為的中點(diǎn),動點(diǎn)滿足,且,設(shè)點(diǎn)的軌跡為曲線.(1)求曲線的方程;(2)過點(diǎn)的直線交曲線于,兩點(diǎn),為曲線上異于,的任意一點(diǎn),直線,分別交直線于,兩點(diǎn).問是否為定值?若是,求的值;若不是,請說明理由.18.(12分)十八大以來,黨中央提出要在2020年實(shí)現(xiàn)全面脫貧,為了實(shí)現(xiàn)這一目標(biāo),國家對“新農(nóng)合”(新型農(nóng)村合作醫(yī)療)推出了新政,各級財政提高了對“新農(nóng)合”的補(bǔ)助標(biāo)準(zhǔn).提高了各項(xiàng)報銷的比例,其中門診報銷比例如下:表1:新農(nóng)合門診報銷比例醫(yī)院類別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院門診報銷比例60%40%30%20%根據(jù)以往的數(shù)據(jù)統(tǒng)計,李村一個結(jié)算年度門診就診人次情況如下:表2:李村一個結(jié)算年度門診就診情況統(tǒng)計表醫(yī)院類別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院一個結(jié)算年度內(nèi)各門診就診人次占李村總就診人次的比例70%10%15%5%如果一個結(jié)算年度每人次到村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院門診平均費(fèi)用分別為50元、100元、200元、500元.若李村一個結(jié)算年度內(nèi)去門診就診人次為2000人次.(Ⅰ)李村在這個結(jié)算年度內(nèi)去三甲醫(yī)院門診就診的人次中,60歲以上的人次占了80%,從去三甲醫(yī)院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的概率是多少?(Ⅱ)如果將李村這個結(jié)算年度內(nèi)門診就診人次占全村總就診人次的比例視為概率,求李村這個結(jié)算年度每人次用于門診實(shí)付費(fèi)用(報銷后個人應(yīng)承擔(dān)部分)的分布列與期望.19.(12分)在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,射線的極坐標(biāo)方程為,射線的極坐標(biāo)方程為.(Ⅰ)寫出曲線的極坐標(biāo)方程,并指出是何種曲線;(Ⅱ)若射線與曲線交于兩點(diǎn),射線與曲線交于兩點(diǎn),求面積的取值范圍.20.(12分)如圖,在四棱錐P—ABCD中,四邊形ABCD為平行四邊形,BD⊥DC,△PCD為正三角形,平面PCD⊥平面ABCD,E為PC的中點(diǎn).(1)證明:AP∥平面EBD;(2)證明:BE⊥PC.21.(12分)健身館某項(xiàng)目收費(fèi)標(biāo)準(zhǔn)為每次60元,現(xiàn)推出會員優(yōu)惠活動:具體收費(fèi)標(biāo)準(zhǔn)如下:現(xiàn)隨機(jī)抽取了100為會員統(tǒng)計它們的消費(fèi)次數(shù),得到數(shù)據(jù)如下:假設(shè)該項(xiàng)目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問題:(1)估計1位會員至少消費(fèi)兩次的概率(2)某會員消費(fèi)4次,求這4次消費(fèi)獲得的平均利潤;(3)假設(shè)每個會員每星期最多消費(fèi)4次,以事件發(fā)生的頻率作為相應(yīng)事件的概率,從會員中隨機(jī)抽取兩位,記從這兩位會員的消費(fèi)獲得的平均利潤之差的絕對值為,求的分布列及數(shù)學(xué)期望22.(10分)在中,設(shè)、、分別為角、、的對邊,記的面積為,且.(1)求角的大小;(2)若,,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
計算,再計算交集得到答案【詳解】,表示偶數(shù),故.故選:.【點(diǎn)睛】本題考查了集合的交集,意在考查學(xué)生的計算能力.2、B【解析】
,將代入,求得公差d,再利用等差數(shù)列的前n項(xiàng)和公式計算即可.【詳解】由已知,,,故,解得或(舍),故,.故選:B.【點(diǎn)睛】本題考查等差數(shù)列的前n項(xiàng)和公式,考查等差數(shù)列基本量的計算,是一道容易題.3、D【解析】
利用復(fù)數(shù)的除法運(yùn)算,化簡復(fù)數(shù),即可求解,得到答案.【詳解】由題意,復(fù)數(shù),故選D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的除法運(yùn)算,其中解答中熟記復(fù)數(shù)的除法運(yùn)算法則是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.4、A【解析】
根據(jù)分段函數(shù)直接計算得到答案.【詳解】因?yàn)樗?故選:.【點(diǎn)睛】本題考查了分段函數(shù)計算,意在考查學(xué)生的計算能力.5、A【解析】
根據(jù)向量坐標(biāo)運(yùn)算求得,由平行關(guān)系構(gòu)造方程可求得結(jié)果.【詳解】,,解得:故選:【點(diǎn)睛】本題考查根據(jù)向量平行關(guān)系求解參數(shù)值的問題,涉及到平面向量的坐標(biāo)運(yùn)算;關(guān)鍵是明確若兩向量平行,則.6、B【解析】
設(shè),,利用復(fù)數(shù)幾何意義計算.【詳解】設(shè),由已知,,所以點(diǎn)在單位圓上,而,表示點(diǎn)到的距離,故.故選:B.【點(diǎn)睛】本題考查求復(fù)數(shù)模的最大值,其實(shí)本題可以利用不等式來解決.7、B【解析】
先判斷命題的真假,進(jìn)而根據(jù)復(fù)合命題真假的真值表,即可得答案.【詳解】,,因?yàn)?,,所以,所以,即命題p為真命題;畫出函數(shù)和圖象,知命題q為假命題,所以為真.故選:B.【點(diǎn)睛】本題考查真假命題的概念,以及真值表的應(yīng)用,解題的關(guān)鍵是判斷出命題的真假,難度較易.8、A【解析】
根據(jù)拋物線的性質(zhì)求出點(diǎn)坐標(biāo)和焦點(diǎn)坐標(biāo),進(jìn)而求出點(diǎn)的坐標(biāo),代入斜率公式即可求解.【詳解】設(shè)點(diǎn)的坐標(biāo)為,由題意知,焦點(diǎn),準(zhǔn)線方程,所以,解得,把點(diǎn)代入拋物線方程可得,,因?yàn)?,所以,所以點(diǎn)坐標(biāo)為,代入斜率公式可得,.故選:A【點(diǎn)睛】本題考查拋物線的性質(zhì),考查運(yùn)算求解能力;屬于基礎(chǔ)題.9、A【解析】
對于①,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國民分配越公平,所以①正確.對于②,根據(jù)勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以②錯誤.對于③,因?yàn)?,所以,所以③錯誤.對于④,因?yàn)椋?,所以④正確.故選A.10、C【解析】
建立坐標(biāo)系,寫出相應(yīng)的點(diǎn)坐標(biāo),得到的表達(dá)式,進(jìn)而得到最大值.【詳解】以D點(diǎn)為原點(diǎn),BC所在直線為x軸,AD所在直線為y軸,建立坐標(biāo)系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為可得到點(diǎn)的坐標(biāo)為:故得到故得到,故最大值為:2.故答案為C.【點(diǎn)睛】這個題目考查了向量標(biāo)化的應(yīng)用,以及參數(shù)方程的應(yīng)用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類綜合問題.通過向量的運(yùn)算,將問題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類問題的一般方法.11、D【解析】
根據(jù)函數(shù)圖像得到函數(shù)的一個解析式為,再根據(jù)平移法則得到答案.【詳解】設(shè)函數(shù)解析式為,根據(jù)圖像:,,故,即,,,取,得到,函數(shù)向右平移個單位得到.故選:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)圖像求函數(shù)解析式,三角函數(shù)平移,意在考查學(xué)生對于三角函數(shù)知識的綜合應(yīng)用.12、A【解析】分析:通過對an﹣an+1=2anan+1變形可知,進(jìn)而可知,利用裂項(xiàng)相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數(shù)列前項(xiàng)的和為,故選A.點(diǎn)睛:裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),常見的裂項(xiàng)技巧:(1);(2);(3);(4);此外,需注意裂項(xiàng)之后相消的過程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問題,導(dǎo)致計算結(jié)果錯誤.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)均為正數(shù),等價于恒成立,令,轉(zhuǎn)化為恒成立,利用基本不等式求解最值.【詳解】由題均為正數(shù),不等式恒成立,等價于恒成立,令則,當(dāng)且僅當(dāng)即時取得等號,故的最大值為.故答案為:【點(diǎn)睛】此題考查不等式恒成立求參數(shù)的取值范圍,關(guān)鍵在于合理進(jìn)行等價變形,此題可以構(gòu)造二次函數(shù)求解,也可利用基本不等式求解.14、【解析】
直接由復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡,結(jié)合已知條件即可求出實(shí)數(shù)的值.【詳解】解:的實(shí)部與虛部相等,所以,計算得出.故答案為:【點(diǎn)睛】本題考查復(fù)數(shù)的乘法運(yùn)算和復(fù)數(shù)的概念,屬于基礎(chǔ)題.15、【解析】
由為假,可知為真,所以對任意實(shí)數(shù)恒成立,求出的最小值,令即可.【詳解】因?yàn)闉榧伲瑒t其否定為真,即為真,所以對任意實(shí)數(shù)恒成立,所以.又,當(dāng)且僅當(dāng),即時,等號成立,所以.故答案為:.【點(diǎn)睛】本題考查全稱命題與特稱命題間的關(guān)系的應(yīng)用,利用參變分離是解決本題的關(guān)鍵,屬于中檔題.16、【解析】
根據(jù),則當(dāng)時,,即.當(dāng)時,顯然成立;當(dāng)時,由,轉(zhuǎn)化為,令,用導(dǎo)數(shù)法求其最大值即可.【詳解】因?yàn)?,又?dāng)時,,即.當(dāng)時,顯然成立;當(dāng)時,由等價于,令,,當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,,則,又,得,因此的最大值為.故答案為:【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)是定值,.【解析】
(1)設(shè)出M的坐標(biāo)為,采用直接法求曲線的方程;(2)設(shè)AB的方程為,,,,求出AT方程,聯(lián)立直線方程得D點(diǎn)的坐標(biāo),同理可得E點(diǎn)的坐標(biāo),最后利用向量數(shù)量積算即可.【詳解】(1)設(shè)動點(diǎn)M的坐標(biāo)為,由知∥,又在直線上,所以P點(diǎn)坐標(biāo)為,又,點(diǎn)為的中點(diǎn),所以,,,由得,即;(2)設(shè)直線AB的方程為,代入得,設(shè),,則,,設(shè),則,所以AT的直線方程為即,令,則,所以D點(diǎn)的坐標(biāo)為,同理E點(diǎn)的坐標(biāo)為,于是,,所以,從而,所以是定值.【點(diǎn)睛】本題考查了直接法求拋物線的軌跡方程、直線與拋物線位置關(guān)系中的定值問題,在處理此類問題一般要涉及根與系數(shù)的關(guān)系,本題思路簡單,但計算量比較大,是一道有一定難度的題.18、(Ⅰ);(Ⅱ)的發(fā)分布列為:X2060140400P0.70.10.150.05期望.【解析】
(Ⅰ)由表2可得去各個門診的人次比例可得2000人中各個門診的人數(shù),即可知道去三甲醫(yī)院的總?cè)藬?shù),又有60歲所占的百分比可得60歲以上的人數(shù),進(jìn)而求出任選2人60歲以上的概率;(Ⅱ)由去各門診結(jié)算的平均費(fèi)用及表1所報的百分比可得隨機(jī)變量的可能取值,再由概率可得的分布列,進(jìn)而求出概率.【詳解】解:(Ⅰ)由表2可得李村一個結(jié)算年度內(nèi)去門診就診人次為2000人次,分別去村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院人數(shù)為,,,,而三甲醫(yī)院門診就診的人次中,60歲以上的人次占了,所以去三甲醫(yī)院門診就診的人次中,60歲以上的人數(shù)為:人,設(shè)從去三甲醫(yī)院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的事件記為,則;(Ⅱ)由題意可得隨機(jī)變量的可能取值為:,,,,,,,,所以的發(fā)分布列為:X2060140400P0.70.10.150.05所以可得期望.【點(diǎn)睛】本題主要考查互斥事件、隨機(jī)事件的概率計算公式、分布列及其數(shù)學(xué)期望、組合計算公式,考查了推理能力與計算能力,屬于中檔題.19、(Ⅰ),曲線是以為圓心,為半徑的圓;(Ⅱ).【解析】
(Ⅰ)由曲線的參數(shù)方程能求出曲線的普通方程,由此能求出曲線的極坐標(biāo)方程.(Ⅱ)令,,則,利用誘導(dǎo)公式及二倍角公式化簡,再由余弦函數(shù)的性質(zhì)求出面積的取值范圍;【詳解】解:(Ⅰ)由(為參數(shù))化為普通方程為,整理得曲線是以為圓心,為半徑的圓.(Ⅱ)令,,,,面積的取值范圍為【點(diǎn)睛】本題考查曲線的極坐標(biāo)方程的求法,考查三角形的面積的求法,考查參數(shù)方程、直角坐標(biāo)方程、極坐標(biāo)方程的互化等基礎(chǔ)知識,考查運(yùn)算求解能力,屬于中檔題.20、(1)見解析(2)見解析【解析】
(1)連結(jié)AC交BD于點(diǎn)O,連結(jié)OE,利用三角形中位線可得AP∥OE,從而可證AP∥平面EBD;(2)先證明BD⊥平面PCD,再證明PC⊥平面BDE,從而可證BE⊥PC.【詳解】證明:(1)連結(jié)AC交BD于點(diǎn)O,連結(jié)OE因?yàn)樗倪呅蜛BCD為平行四邊形∴O為AC中點(diǎn),又E為PC中點(diǎn),故AP∥OE,又AP平面EBD,OE平面EBD所以AP∥平面EBD
;(2)∵△PCD為正三角形,E為PC中點(diǎn)所以PC⊥DE因?yàn)槠矫鍼CD⊥平面ABCD,平面PCD平面ABCD=CD,又BD平面ABCD,BD⊥CD∴BD⊥平面PCD又PC平面PCD,故PC⊥BD又BDDE=D,BD平面BDE,DE平面BDE故PC⊥平面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 上海東海職業(yè)技術(shù)學(xué)院《環(huán)境工程技術(shù)經(jīng)濟(jì)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海電子信息職業(yè)技術(shù)學(xué)院《公益活動(采礦工程)》2023-2024學(xué)年第一學(xué)期期末試卷
- 川劇課程設(shè)計案例
- 2024年度土方車租賃與道路拓寬工程合同3篇
- 教科版二年級上冊科學(xué)期末測試卷及答案(典優(yōu))
- java課程設(shè)計和代碼
- 幼兒年畫課程設(shè)計
- 育嬰師聘用合同
- 最好的跑步課程設(shè)計
- 智能體脂秤相關(guān)行業(yè)投資規(guī)劃報告
- 2024年可行性研究報告投資估算及財務(wù)分析全套計算表格(含附表-帶只更改標(biāo)紅部分-操作簡單)
- 國家開放大學(xué)《初級經(jīng)濟(jì)學(xué)》形考任務(wù)1-3參考答案
- 創(chuàng)業(yè)修煉智慧樹知到期末考試答案章節(jié)答案2024年同濟(jì)大學(xué)
- 行政執(zhí)法考試試卷及參考答案
- 2024春期國開電大《應(yīng)用寫作(漢語)》形考任務(wù)1-6參考答案
- MOOC 英文技術(shù)寫作-東南大學(xué) 中國大學(xué)慕課答案
- 企業(yè)EHS風(fēng)險管理基礎(chǔ)智慧樹知到期末考試答案2024年
- 2023年福建省考評員考試題
- 病原微生物實(shí)驗(yàn)室生物安全備案專家意見表
- 鏡片加工知識之四研磨
- 核電站1E級電氣設(shè)備鑒定標(biāo)準(zhǔn)技術(shù)經(jīng)驗(yàn)
評論
0/150
提交評論