




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
§2.1常微分方程的解(復(fù)習(xí))一.二階常系數(shù)線性方程的標(biāo)準(zhǔn)形式第1頁/共28頁二.二階常系數(shù)線性齊次微分方程的解特征根:
(1)有兩個不相等的實(shí)根兩個線性無關(guān)的特解得齊次方程的通解為齊次方程:特征方程:第2頁/共28頁齊次方程的通解為:特解為:(3)有一對共軛復(fù)根時齊次方程的通解為特征根為:特解為:(2)有兩個相等的實(shí)根時第3頁/共28頁小結(jié):二階常系數(shù)線性齊次微分方程解特征根:齊次方程:特征方程:利用了歐拉公式第4頁/共28頁例:求下列方程的通解解(1)特征方程為所以方程的通解為解得第5頁/共28頁所以方程的通解為解得(2)特征方程為所以方程的通解為
(3)特征方程為解得第6頁/共28頁解特征方程為即特征方程有兩個不相等的實(shí)數(shù)根所以所求方程的通解為對上式求導(dǎo),得例:求滿足初始條件
的特解.將、代入以上二式,得第7頁/共28頁解此方程組,得所以所求特解為第8頁/共28頁(2)對應(yīng)齊次方程為:
(3)通解結(jié)構(gòu):三.二階常系數(shù)非齊次線性方程(1)非齊次線性方程通式:第9頁/共28頁§2.二階線性偏微分方程分類1.一般形式及分類判別其中,都是區(qū)域上的實(shí)函數(shù),并假定它們是連續(xù)可微的。2.二階主部為:3.判別式及分類:雙曲型拋物型橢圓型第10頁/共28頁判斷下列方程的類型思考:第11頁/共28頁§3.方程簡化1.線性二階偏微分方程的一般形式(2個自變量)其中,都是區(qū)域上的實(shí)函數(shù),并假定它們是連續(xù)可微的。
n個自變量:其中是自變量
的函數(shù)第12頁/共28頁2.變量替換與方程轉(zhuǎn)型(1)變量代換:(2)一般式轉(zhuǎn)為:系數(shù)為:變量替換是研究偏微分方程的有效手段,適當(dāng)?shù)淖儞Q,可簡化方程、易求解。第13頁/共28頁注:變量替換必須為非奇異變換非奇異變換:雅克比(Jacobi)行列式在點(diǎn)(x0,y0)不等于零,即:則:在點(diǎn)(x0,y0)附近變換是可逆的。第14頁/共28頁3.方程簡化4.求特解構(gòu)造一階偏微分方程:求一個特解,則:再求另一個特解,則A22=0偏微分方程轉(zhuǎn)為常微分方程第15頁/共28頁5.特征方程與特征曲線1.特征方程:2.解:3.特征曲線:第16頁/共28頁例2.1.1判斷偏微分方程類型并化簡:解:特征方程特征方程的解:特征線:令:雙曲型方程第17頁/共28頁例2.1.3
設(shè)常數(shù)A,B,C滿足m1、m2是如下方程的兩個根的通解為:證明二階線性偏微分方程證明:設(shè)則:第18頁/共28頁§4三類方程的簡化形式當(dāng)時,給出一族實(shí)的特征曲線取則方程變?yōu)槿粼僮鲃t上述方程變?yōu)椋?/p>
1.雙曲方程型方程:第19頁/共28頁當(dāng)
時,只有一個解它只能給出一個實(shí)的特征線,
。取與函數(shù)無關(guān)的作為另一個新的變量則有:2.拋物型方程:第20頁/共28頁當(dāng)
時,給出一族復(fù)特征線在該變換下:且方程化為:令則有:3.橢圓型方程:第21頁/共28頁小結(jié):三種方程的標(biāo)準(zhǔn)型式:第22頁/共28頁例題1:分類并標(biāo)準(zhǔn)化方程:解:該方程的故該方程是拋物型的。特征方程:從而得到方程的一族特征線為:自變量代換(由于ξ和η必須函數(shù)無關(guān),所以η宜取最簡單的函數(shù)形式,即η=x
或η=y)原方程化簡后的標(biāo)準(zhǔn)形式為:特征的解:第23頁/共28頁例2.判斷偏微分方程類型并化簡:解:∵故
故該方程為雙曲型偏微分方程,其特征方程故有
或
取新變量則或
解為第24頁/共28頁例2(續(xù)),代入原方程得:即:第25頁/共28頁例3.判斷偏微分方程的類型并化簡:解:特征方程特征方程的解:特征線:令:雙曲型方程第26頁/共28頁第二章:復(fù)習(xí)思考題與作業(yè)一.寫出二階常系數(shù)線性齊次微分方程的特征方程與特征根。二.簡述二階常系數(shù)線性齊次微分方程的求解步驟。三.寫出二階線性偏微分方程的辨別式及其分類原則。四.解釋何謂自變量非
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人力外包招聘合同范本
- 2025年德州年貨運(yùn)從業(yè)資格證考試題庫
- 勞動合同范本 股權(quán)
- 企業(yè)借貸合同質(zhì)押合同范本
- 代理分紅合同范本
- 買門頭房合同范本
- 動遷協(xié)議合同范本
- 東莞擺攤餐飲轉(zhuǎn)讓合同范本
- 任意拆解合同范本
- 制作車輛抵押合同范本
- XX攔河堰工程施工組織設(shè)計(jì)
- GB/T 9787-1988熱軋等邊角鋼尺寸、外形、重量及允許偏差
- GB/T 7031-2005機(jī)械振動道路路面譜測量數(shù)據(jù)報(bào)告
- 馬工程教材《公共財(cái)政概論》PPT-第十二章 財(cái)政體制
- GB/T 23457-2009預(yù)鋪/濕鋪防水卷材
- GB/T 17614.1-2015工業(yè)過程控制系統(tǒng)用變送器第1部分:性能評定方法
- 財(cái)務(wù)工作督導(dǎo)檢查記錄表
- 輿情大數(shù)據(jù)監(jiān)測平臺建設(shè)方案
- 先天性腎上腺皮質(zhì)增生癥(CAH)課件
- 水利工程設(shè)計(jì)變更表格
- 畢業(yè)設(shè)計(jì)(論文)-巴哈賽車懸架系統(tǒng)設(shè)計(jì)
評論
0/150
提交評論